• 제목/요약/키워드: Upper Bound Theorem

검색결과 54건 처리시간 0.019초

3D stability of shallow cavity roof with arbitrary profile under influence of pore water pressure

  • Luo, W.J.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.569-575
    • /
    • 2018
  • The stability of shallow cavities with an arbitrary profile is a difficult issue in geotechnical engineering. This paper investigates this problem on the basis of the upper bound theorem of limit analysis and the Hoek-Brown failure criterion. The influence of pore pressure is taken into consideration by regarding it as an external force acting on rock skeleton. An objective function is constructed by equating the internal energy dissipation to the external force work. Then the Lagrange variation approach is used to solve this function. The validity of the proposed method is demonstrated by comparing the analytical solutions with the published research. The relations between shallow and deep cavity are revealed as well. The detaching curve of cavity roof with elliptical profile is obtained. In order to facilitate the application of engineering practice, the numerical results are tabulated, which play an important role in tunnel design and stability analysis of roof. The influential factors on potential collapse are taken into consideration. From the results, the impact of various factors on the extent of detaching is seen intuitively.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

시공줄눈이 있는 콘크리트 경계면의 전단마찰 내력에 대한 보강철근의 영향 (Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint)

  • 황용하;양근혁
    • 콘크리트학회논문집
    • /
    • 제28권5호
    • /
    • pp.555-562
    • /
    • 2016
  • 이 연구의 목적은 부드러운 면의 시공줄눈을 가지는 콘크리트 경계면에서의 횡보강근의 전단전달력을 평가하는 것이다. 횡보강근의 배근은 전단마찰 면에 수직으로 배근한 그룹(V-type)과 $45^{\circ}$의 X형으로 교차배근 한 그룹(X-type)으로 나누었다. 전단마찰면에서 횡보강근비는 V형 철근배근의 경우 0.0045~0.0135로, X형 철근의 경우 0.0064 및 0.0045이다. 소성론의 상계치 이론(upper-bound theorem)을 기반으로 한 일체화된 콘크리트의 전단마찰모델을 수정하여, 부드러운 면의 시공줄눈을 갖는 콘크리트의 전단마찰내력을 평가하였다. 실험결과, 시공줄눈이 있는 두 부재사이의 전단마찰 내력에 대한 콘크리트 단위용적중량의 영향은 미미하였다. 시공줄눈에서 상대 미끄러짐 제어 및 전단마찰내력에 대해서는 X형 배근이 V형 배근에 비해 다소 유리하였다. 부드러운 면을 갖는 시공줄눈의 전단마찰내력에 대한 실험결과와 제안모델에 의한 예측값의 비들의 평균과 표준편차는 각각 1.07과 0.14로 나타났다.

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

탄소성 이론을 이용한 복합지반의 등가특성치 예측 (Determination of Equivalent Properties of Composite Foundation Using Elasto-plastic Theory)

  • 이주형;이상익;김영욱;김병일
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.179-187
    • /
    • 2003
  • 모래다짐말뚝과 쇄석말뚝 등 연직방향의 보강재를 이용한 방법은 지반의 지지력을 증가, 침하를 감소 등을 기대할 수 있는 효과적인 연약지반 개량공법이다. 이번 연구에서는 지반거동 특성을 이해함에 있어 탄소성이론을 이용하여 복합지반의 등가특성치(E,$\mu,\phi,c$)를 얻을 수 있는 이론식을 제시하였으며, 이론식을 토대로 사례별 등가특성치들을 산정하였다. 또한 산정된 등가특성치를 지반 해석프로그램인 SAGE CRISP을 사용하여 2차원 해석을 수행하여 그 결과를 원지반 특성치로 수행한 해석결과와 비교 분석하였다. 연구결과 원지반 특성치를 대신하여 이론식을 통해 얻은 등가특성치를 이용하여도 비슷한 결과를 얻을 수 있었다. 결과적으로 탄소성이론을 근거로 한 이론식에서 얻은 등가특성치들이 예비설계 단계에서 유용하게 사용될 수 있음을 제시하였다.

Characterization of New Two Parametric Generalized Useful Information Measure

  • Bhat, Ashiq Hussain;Baig, M. A. K.
    • Journal of Information Science Theory and Practice
    • /
    • 제4권4호
    • /
    • pp.64-74
    • /
    • 2016
  • In this paper we define a two parametric new generalized useful average code-word length $L_{\alpha}^{\beta}$(P;U) and its relationship with two parametric new generalized useful information measure $H_{\alpha}^{\beta}$(P;U) has been discussed. The lower and upper bound of $L_{\alpha}^{\beta}$(P;U), in terms of $H_{\alpha}^{\beta}$(P;U) are derived for a discrete noiseless channel. The measures defined in this communication are not only new but some well known measures are the particular cases of our proposed measures that already exist in the literature of useful information theory. The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding schemes on taking empirical data. Also we study the monotonic behavior of $H_{\alpha}^{\beta}$(P;U) with respect to parameters ${\alpha}$ and ${\beta}$. The important properties of $H_{{\alpha}}^{{\beta}}$(P;U) have also been studied.