• 제목/요약/키워드: Uplink/Downlink

검색결과 200건 처리시간 0.026초

Mobile WiMAX 기지국의 최적 출력파워 도출에 관한 연구 (A Study on the Output Power Optimization of Mobile WiMAX Base Station)

  • 김성만
    • 한국통신학회논문지
    • /
    • 제35권4A호
    • /
    • pp.341-349
    • /
    • 2010
  • 본 논문은 차세대 이동통신 기술로 주목받고 있는 IEEE 802.16 기반의 Mobile WiMAX (또는 WiBro) 시스템에서 여러 가지 채널환경조건 및 기지국의 조건을 고려하여 기지국의 출력파워를 최적으로 설계하는 방법에 관한 것이다. 본 논문에서는 다양한 환경조건에서 Mobile WiMAX 시스템의 상/하향 링크버짓(link budget)을 산출하여, 이로부터 Mobile WiMAX 기지국의 최적 출력파워를 도출하는 방법에 대해 정리하였다. 본 논문에서는 MIMO(multiple input multiple output) 기술이 적용된 기존의 2Tx-2Rx 기지국과 여기에 수신단의 감도를 높이기 위해 수신단의 안테나 개수를 4개로 늘린 2Tx-4Rx 기지국과 성능을 향상시키기 위해 새롭게 빔포밍(beamforming) 기술이 적용된 4Tx-4Rx 기지국의 경우 등 총 세 가지 경우에 대하여 최적 출력파워를 도출하였다.

Full-Duplex Operations in Wireless Powered Communication Networks

  • Ju, Hyungsik;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.794-802
    • /
    • 2017
  • In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H-AP) and multiple user equipment (UE), all of which operate in full-duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD-WPCN-FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self-interference cancellation capability at the H-AP. Compared to the WPCN with FD H-AP and half-duplex (HD) UE, FD-WPCN-FD achieved an 18% throughput gain. In addition, the throughput of FD-WPCN-FD was shown to be 25% greater than that of WPCN in which an H-AP and UE operated in HD.

4G 이동통신기반 초간편 접속 고기능 광커넥터의 구현 (Implementation of Quick fit, High Performance Outdoor Optical Connector for 4G Mobile Communication System)

  • 이영철;김철균;천승창;정우연
    • 정보통신설비학회논문지
    • /
    • 제10권3호
    • /
    • pp.110-114
    • /
    • 2011
  • The recent development of 4G mobile communication system has led to the rapid technology shift from conventional repeater systems using coaxial cable links towards new fiber optic repeater systems using fiber-optic links between the base station and the outdoor fiber optic repeater. The technical changes have brought up the increasing needs of robust optic links that can be used in harsh environments. Based on the most demanding requirements, a new outdoor optical connector employing 2-channel fiber optics, uplink and downlink, has been developed for the applications where the rugged environmental protection is essential. This paper describes the development of the new connector along with the design criteria and performance results. In summarizing, the prototype optical connectors have undergone extensive laboratory and field test, and they have shown exceptional optical and mechanical characteristics under extreme environmental conditions. The connectors have also exhibited capabilities of providing fast and easy installation while maintaining high performance fiber optic connections.

  • PDF

Binary Power Control for Sum Rate Maximization of Full Duplex Transmission in Multicell Networks

  • Vo, Ta-Hoang;Hwang, Won-Joo
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.583-585
    • /
    • 2016
  • The recent advances in wireless networks area have led to new techniques, such as small cells or full-duplex (FD) transmission, have also been developed to further increase the network capacity. Particularly, full-duplex communication promises expected throughput gain by doubling the spectrum compared to half-duplex (HD) communication. Because this technique permits one set of frequencies to simultaneously transmit and receive signals. In this paper, we focus on the binary power control for the users and the base stations in full-duplex multiple cellulars wireless networks to obtain optimal sum-rate under the effect interference and noise. We investigate with a scenario in there one carrier is assigned to only one user in each cell and construct a model for this problem. In this work, we apply the binary power control by the its simplification in the implemented algorithm for both uplink and downlink simultaneously to maximize sum data rate of the system. At first, we realize the 2-cells case separately to check the optimal power allocation whether being binary. Then, we carry on with N-cells case in general through properties of binary power control.

  • PDF

Conception and Performance Analysis of Efficient CDMA-Based Full-Duplex Anti-collision Scheme

  • Cao, Xiaohua;Li, Tiffany
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.929-939
    • /
    • 2015
  • Ultra-high-frequency radio-frequency identification (UHF RFID) is widely applied in different industries. The Frame Slotted ALOHA in EPC C1G2 suffers severe collisions that limit the efficiency of tag recognition. An efficient full-duplex anti-collision scheme is proposed to reduce the rate of collision by coordinating the transmitting process of CDMA UWB uplink and UHF downlink. The relevant mathematical models are built to analyze the performance of the proposed scheme. Through simulation, some important findings are gained. The maximum number of identified tags in one slot is g/e (g is the number of PN codes and e is Euler's constant) when the number of tags is equal to mg (m is the number of slots). Unlike the Frame Slotted ALOHA, even if the frame size is small and the number of tags is large, there aren't too many collisions if the number of PN codes is large enough. Our approach with 7-bit Gold codes, 15-bit Gold codes, or 31-bit Gold codes operates 1.4 times, 1.7 times, or 3 times faster than the CDMA Slotted ALOHA, respectively, and 14.5 times, 16.2 times, or 18.5 times faster than the EPC C1 G2 system, respectively. More than 2,000 tags can be processed within 300 ms in our approach.

Self-Encoded Spread Spectrum and Turbo Coding

  • Jang, Won-Mee;Nguyen, Lim;Hempel, Michael
    • Journal of Communications and Networks
    • /
    • 제6권1호
    • /
    • pp.9-18
    • /
    • 2004
  • Self-encoded multiple access (SEMA) is a unique realization of random spread spectrum. As the term implies, the spreading code is obtained from the random digital information source instead of the traditional pseudo noise (PN) code generators. The time-varying random codes can provide additional security in wireless communications. Multi-rate transmissions or multi-level grade of services are also easily implementable in SEMA. In this paper, we analyze the performance of SEMA in additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. Differential encoding eliminates the BER effect of error propagations due to receiver detection errors. The performance of SEMA approaches the random spread spectrum discussed in literature at high signal to noise ratios. For performance improvement, we employ multiuser detection and Turbo coding. We consider a downlink synchronous system such as base station to mobile communication though the analysis can be extended to uplink communications.

LTE 시스템에서 극 다수 기계간 통신을 위한 무선 자원 사용량 분석 (Analysis of Radio Resource Utilization for a Massive M2M Communication in LTE Systems)

  • 추은미;정방철
    • 한국통신학회논문지
    • /
    • 제42권3호
    • /
    • pp.562-565
    • /
    • 2017
  • 본 논문에서는 다수의 머신 노드들이 동시에 LTE 시스템에 액세스 요청하고, 상향 링크 패킷을 전송하는 7단계 전송 과정을 고려한다. 모델링을 통해서 무선 자원 사용량을 분석하고, 부하가 집중되는 리소스를 파악한다. 시뮬레이션 결과를 통해 하향 링크 제어 채널인 PDCCH (physical down link control channel)의 사용률이 머신 노드의 수의 증가에 따라 급속도로 증가함을 보여준다. 이를 해결하기 위해 본 논문에서는 하향 링크 공유 채널인 PDSCH (physical downlink shared channel) 자원을 PDCCH에 할당한다. 이를 통해 PDCCH 자원 사용률이 개선 되었음을 보인다.

Performance Test for the SIGMA Communication System

  • Jeong, Seonyeong;Lee, Hyojeong;Lee, Seongwhan;Shin, Jehyuck;Lee, Jungkyu;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.335-344
    • /
    • 2016
  • Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.

Review on LTE-Advanced Mobile Technology

  • Seo, Dae-woong;Kim, Yoon-Hwan;Song, Jeong-Sang;Jang, Bongseog;Bae, Sang-Hyun
    • 통합자연과학논문집
    • /
    • 제11권4호
    • /
    • pp.197-203
    • /
    • 2018
  • Long Term Evolution-Advanced (LTE-A) is the next drive in the broadband mobile communication, which allows operators to improve networks performance and service capabilities. LTE-A targets the peak data rates of 1Gbps in the downlink and 500Mbps in the uplink. This requirement is only fulfilled by a transmission bandwidth of up to 100MHz. However the accessibility of such large part of the contiguous spectrum is uncommon in practice. Therefore LTE-A uses some new features on top of the existing LTE standards to provide very high data rate transmission. Some of the most significant features introduced in LTE-A are carrier aggregation, heterogeneous network enhancement, coordinated multipoint transmission and reception, enhanced multiple input and multiple output, and development relay nodes with universal frequency reuse. This review paper presents an overview of the above mentioned LTE-A key features and functionalities. Based on this review, in the conclusion we discuss the current technical challenges for future broadband mobile communication systems.

Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.874-890
    • /
    • 2021
  • With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.