• Title/Summary/Keyword: Uplifting force

Search Result 13, Processing Time 0.02 seconds

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF

An Experimental Study on Suction Force of Plate Anchor Embedded in Bentonite (벤토나이트에 근입된 앵커의 흡입력에 관한 실험적 연구)

  • 이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • Anchors are often used in construction of foundations such as transmission towers to resist uplifting forces. When plate anchors are embedded in soft clay, they may undergo a deformation under the pressure of sustained load. In soft saturated clays, the suction force can be a large par of the ultimate uplift capacity. This study is to present recent laboratory model test results conducted to evaluate the nature of variation of the suction force for plate anchors with shear strength and embedment ratio. The ratio of F$_{s}$Q$_{n}$ versus H/D in bentonite decreases with the increase of the embedment ratio.o.o.

  • PDF

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Way of Trust Restoration through Uplifting Police Integrity (경찰공무원 청렴성제고를 통한 신뢰도 회복방안)

  • Lee, Hyo-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.78-87
    • /
    • 2015
  • Recently, Police integrity has been issued on the media, which cause discredit of police organization. Although high level of morality and integrity are required compared to other occupational groups due to their authority to exert legal force to the citizens and a variety of policies have been enforced by the National Police Agency for the purpose of uplifting the integrity of the officers, in reality, corruption had not yet been eradicated. At this point in time, this study attempted to draw implications for uplifting integrity by utilizing domestic and foreign preceding studies and statistical data related to police corruption and uplifting integrity. The inspection system through whistle-blowing was pointed out as a problem in the institutional framework that hinders uplifting integrity of the police officers and the perception in which police officers are regarded as potential criminals was also pointed out as a problem. Also, vague standards of disciplinary action in examining an offense of a police officer and lack of care for those who were disciplined in the past which affects loyalty to the organization were presented as problems. Based on such suggested concerns, policies for uplifting integrity and restoring citizens' trust in the policies officers were proposed. The proposed agenda were warning the police officers by presenting clear and specific category of corruptive behaviors, expressing the necessity of devising a system that prevents the officers from committing serious crimes by discovering problematic officers earlier through introduction of Early Warning System(EWS) of US and Australian police in order to break away from exposure-oriented inspection system, and reinforcing the testing of integrity in the new employment process.

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

An Experimental Study of Fastening System for Analysis of Rail Uplifting on Railway Bridge Ends (철도교량 단부 상향력 해석을 위한 체결장치의 실험적 연구)

  • Kim, Jung-Hun;Lim, Nam-Hyoung;Choi, Sang-Hyun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.307-311
    • /
    • 2007
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces made the compressive and tensile forces occur in the fastening system. Therefore, the structural analysis was performed to investigate the safety of fastening system which was modeled as one directional spring element. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. For that reason, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated. Also structural behavior of the fastening system was analyzed.

  • PDF

Analysis of the Internal Forces of the Rail Supports for the Serviceability of Concrete Slab Track Bridge (콘크리트 슬래브 궤도 교량의 사용성 검토를 위한 레일 지지점에서의 작용력 해석)

  • Choi, Jun-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1303-1313
    • /
    • 2013
  • In this study, the reference values for the internal forces of the rail supports caused by a wheel load, a unit vertical displacement, a unit end rotation in examination of the serviceability of concrete slab track bridge were obtained. In analysis, the analysis models of which the rail was continuously and discretely supported by elastic springs were used. The internal forces of the rail supports from the analysis were compared with the results provided in the DS 804 regulations and agreed with well. In addition, the effects of the space between the rail supports and the stiffness of fastener on the internal forces of the rail supports were investigated.

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.