• Title/Summary/Keyword: Uplift

Search Result 470, Processing Time 0.029 seconds

Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile (칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일)

  • Choe Moon Young;Jo Hyung Rae;Sohn Young Kwan;Kim Yeadong
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.23-33
    • /
    • 2004
  • The Lago Sofia conglomerate in southern Chile is a lenticular unit encased within mudstone-dominated, deep-sea successions (Cerro Toro Formation, upper Cretaceous), extending from north to south for more than $120{\cal}km$. The Lago Sofia conglomerate is a unique example of long, gravelly deep-sea channels, which are rare in the modern environments. In the northern part (areas of Lago Pehoe and Laguna Goic), the conglomerate unit consists of 3-5 conglomerate bodies intervened by mudstone sequences. Paleocurrent data from these bodies indicate sediment transport to the east, south, and southeart. The conglomerate bodies in the northern Part are interpreted as the tributary channels that drained down the Paleoslope and converged to form N-S-trending trunk channels. In the southern part (Lago Sofia section), the conglomerate unit comprises a thick (> 300 m) conglomerate body, which probably formed in axial trunk channels of the N-5-trending foredeep trough. The well-exposed Lago Sofia section allowed for detailed investigation of sedimentary facies and large-scale architecture of the deepsea channel conglomerate. The conglomerate in Lago Sofia section comprises stratified conglomerate, massive-to-graded conglomerate, and diamictite, which represent bedload deposition under turbidity currents, deposition by high-density turbidity currents, and muddy debris flows, respectively. Paleocurrent data suggest that the debris flows originated from the failure of nearby channel banks or slopes flanking the channel system, whereas the turbidity currents flowed parallel to the orientation of the overall channel system. Architectural elements produced by turbidity currents represent vertical stacking of gravel sheets, lateral accretion of gravel bars, migration of gravel dunes, and filling of channel thalwegs and scoured hollows, similar to those in terrestrial gravel-bed braided rivers. Observations of large-scale stratal pattern reveal that the channel bodies are offset stacked toward the east, suggestive of an eastward migration of the axial trunk channel. The eastward channel migration is probably due to tectonic tilting related to the uplift of the Andean protocordillera just west of the Lago Sofia deep-sea channel system.

  • PDF

Thermal history of the Jecheon granite pluton in the Ogcheon Fold Belt, South Korea (남한의 옥천습곡대에 분포되어 있는 제천화강암체의 열역사)

  • Jin Myung-Shik;Kim Seong-Jae;Shin Seong-Cheon;Choo Seung-Hwan;Chi Se-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 1992
  • Whole rock and mineral ages for the Jecheon Granite distributed in the Ogcheon Fold Belt were dated by three radiometric methods, and its thermal history was elucidated as follows, on the basis of isotopic age data. Rb and Sr isotopic compositions of three whole rock and seven mineral concentrates made an isochron of 202.7${\pm}$ 1.9 Ma with a strontium initial ratio of 0.7140. Different age data of twelve mineral concentrates agree closely with the retention temperature of each mineral in K-Ar and Fission Track methods. The Jecheon granitic magma was generated by partial melting of crustal materials (S-type), or by mixins between mantle and crustal materials, intruded into the katazone or mesozone (7∼9 km) of the Ogcheon Fold Belt, at least in the Early Jurassic (about 203 Ma), and then crystallized and cooled down rapidly from about 600$^{\circ}C$ to 300$^{\circ}C$ (more than 20$^{\circ}C$/Ma), owing to thermal differences between the magma and the wall-rock. During the Middle to Late Jurassic (190∼140 Ma), the cooling of the granite was likely to stop and keep thermal equilibrium with the wall-rock. The severe tectonism associated with igneous activities and active weathering on the surface in Early to Late Cretaceous time (140∼70 Ma) might have accelerated the granite pluton to uplift rapidly (40∼60 m/Ma in average) up to 3∼4 km and cooled down from 300$^{\circ}C$ to 200$^{\circ}C$ (1.4 $^{\circ}C$/Ma). The granite pluton was likely to keep different uplifting and cooling rate of about 120 m/Ma and 5$^{\circ}C$/Ma in average from the Late Cretaceous to Early Tertiary (70∼50 Ma), and about 60 m/Ma and 2$^{\circ}C$/Ma in average from about 50 Ma up to the present, respectively.

  • PDF

The Development and Application of the Officetel Price Index in Seoul Based on Transaction Data (실거래가를 이용한 서울시 오피스텔 가격지수 산정에 관한 연구)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.33-45
    • /
    • 2021
  • Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Characteristics and Controlling Factors on Nickel Laterite Deposits in Sulawesi, Indonesia (인도네시아 술라웨시 니켈 라테라이트 광상의 특성과 광화 규제 요인)

  • Younggi Choi;Byounghan Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.343-363
    • /
    • 2023
  • Sulawesi island, as a global producer of nickel resources, is leading the rapid growth of nickel industry of Indonesia. Nickel laterite deposits in Sulawesi was formed by lateritization of the world-scale East Sulawesi Ophiolite (ESO) under the active tectonic setting and tropical rainforest climate. In this paper, exploration cases for nickel laterite deposits in five regions of Sulawesi are reported. Regional characteristics on nickel laterite deposits in Sulawesi are understood based on various exploration activities such as outcrop, trench and pit survey, petrological observation, geochemical analysis, and interpretation of drilling data, etc.. In the northeastern part of 'Southeast-Arm', which is a strategic location for nickel industry of Indonesia, ESO is extensively exposed to the surface. In the Morombo and Morowali regions, typical high-grade saprolite-type orebodies with a thickness of 10 to 20 m occur. The cases showed that topographic relief tends to regulate Ni-grade distribution and orebody thickness, and that high grade intervals tend to occur in places where joints and garnierite veins are dense. In the Tinanggea and South Palangga regions in the southern part of the Southeast-Arm, overburden composed of Neogene to Quaternary deposits is a major factor affecting the preservation and profitability of nickel laterite deposits. Despite the overburden, high-grade saprolite-type orebodies composed of Ni-bearing serpentine with garnierite veins occur in a thickness of around 10 m to secure economic feasibility. In contrast, in the Ampana region in the northern part of 'East-Arm', low-grade nickel laterite deposits with immature laterite profile was identified, which is thought to be the result of active denudation due to tectonic uplift. Exploration cases in this paper will help to understand characteristics and controlling factors on nickel laterite deposits in Sulawesi, Indonesia.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Ionospheric Responses to the May 2024 G5 Geomagnetic Storm Over Korea, Captured by the Korea Astronomy and Space Science Institute (KASI) Near Real-Time Ionospheric Monitoring System (2024년 5월 G5 지자기 폭풍 때 한반도 상공 전리권 변화: 한국천문연구원 준 실시간 전리권 감시 시스템 관측 결과를 중심으로)

  • Woo Kyoung Lee;Hyosub Kil;Byung-Kyu Choi;Junseok Hong;Se-Heon Jeong;Sujin Kim;Jeong-Heon Kim;Dong-Hyo Sohn;Kyoung-Min Roh;Sung-Moon Yoo;Tae-Yong Yang;Jaeheung Park;Jong-Kyun Chung;Young-Sil Kwak
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.210-219
    • /
    • 2024
  • This study investigates various ionospheric and thermospheric disturbances around the Korean Peninsula during the G5 geomagnetic storm occurred on May 10, 2024. This level of storm was the first of its magnitude in 21 years, resulting in auroras visible even in South Korea and severe space weather worldwide. The Korea Astronomy and Space Science Institute has been providing ionospheric information over Korea through total electron content (TEC) measurements from the Global Navigation Satellite System (GNSS) and monitoring the impact of ionospheric disturbances on GNSS signals by operating five GNSS scintillation stations in Korea and other countries. During this storm period, large amplitudes of TEC variations were observed over South Korea, along with anomalous TEC enhancements accompanied by strong scintillations at night and persistent TEC depletion on the dayside during the storm's recovery phase. Such daytime TEC depletion disturbances are quite rare, typically occurring only a few times throughout the 11-year solar cycle. While the association of persistent TEC depletion during the daytime with neutral composition disturbances was identified through observations, the causes of TEC enhancement and strong scintillation at night remain unclear. We speculate that the uplift of the ionosphere by storm-induced electric fields is responsible for the TEC enhancement and scintillation, but this hypothesis requires validation based on additional observational data.

Stable Isotope and Fluid Inclusion Studies of the Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상에 대한 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;김상중
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.391-405
    • /
    • 2003
  • The Daebong gold-silver deposit consists of mesothermal massive quartz veins thar are filling the fractures along fault shear (NE, NW) Bones within banded or granitic gneiss of Precambrian Gyeonggi massif. Based on vein mineralogy, ore textures and paragenesis, ore mineralization of this deposits is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing, and transparent quartz vein(stage II) which is separated by a major faulting event. Stage I is divided into the 3 substages. Ore minerals of each substages are as follows: 1) early stage I=magnetite, pyrrhotite, arsenopyrite, pyrite, sphalerite, chalcopyrite, 2) middle stage I=pyrrhotite, arsenopyrite, pyrite, marcasite, sphalerite, chalcopyrite, galena, electrum and 3) late stage I=pyrite, sphalerite, chalcopyrite, galena, electrum, argentite, respectively. Ore minerals of the stage II are composed of pyrite, sphalerite, chalcopyrite, galena and electrum. Systematic studies (petrography and microthermometry) of fluid inclusions in stage I and II quartz veins show fluids from contrasting physical-chemical conditions: 1) $H_2O-CO_2-CH_4-NaCl{\pm}N-2$ fluid(early stage I=homogenization temperature: 203∼3$88^{\circ}C$, pressure: 1082∼2092 bar, salinity: 0.6∼13.4 wt.%, middle stage I=homogenization temperature: 215∼28$0^{\circ}C$, salinity: 0.2∼2.8 wt.%) related to the stage I sulfide deposition, 2) $H_2O-NaCl{\pm}CO_2$ fluid (late stage I=homogenization temperature: 205∼2$88^{\circ}C$, pressure: 670 bar, salinity: 4.5∼6.7 wt.%, stage II=homogenization temperature: 201-3$58^{\circ}C$, salinity: 0.4-4.2 wt.%) related to the late stage I and II sulfide deposition. $H_2O-CO_2-CH_4-NaCl{\pm}N_2$ fluid of early stage I is evolved to $H_2O-NaCl{\pm}CO_2$ fluid represented by the $CO_2$ unmixing due to decrease in fluid pressure and is diluted and cooled by the mixing of deep circulated meteoric waters ($H_2O$-NaCl fluid) possibly related to uplift and unloading of the mineralizing suites. $H_2O-NaCl{\pm}CO_2$ fluid of stage II was hotter than that of late stage I and occurred partly unmixing, mainly dilution and cooling for sulfide deposition. Calculated sulfur isotope compositions ({\gamma}^{34}S_{H2S}$) of hydrothermal fluids (3.5∼7.9%o) indicate that ore sulfur was derived from mainly an igneous source and partly sulfur of host rock. Measured and calculated oxygen and hydrogen isotope compositions ({\gamma}^{18}O_{H_2O}$, {\gamma}$D) of ore fluids (stage I: 1.1∼9.0$\textperthousand$, -92∼-86{\textperthansand}$, stage II: 0.3{\textperthansand}$, -93{\textperthansand}$) and ribbon-banded structure (graphitic lamination) indicate that mesothermal auriferous fluids of Daebong deposit were two different origin and their evolution. 1) Fluids of this deposit were likely mixtures of $H_2O$-rich, isotopically less evolved meteoric water and magmatic fluids and 2) were likely mixtures of $H_2O$-rich. isotopically heavier $\delta$D meteoric water and magmaticmetamorphic fluids.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF