• Title/Summary/Keyword: Up milling

Search Result 239, Processing Time 0.028 seconds

Thermal-hydraulic Design of A Printed-Circuit Steam Generator for Integral Reactor (일체형원자로 인쇄기판형 증기발생기 열수력학적 설계)

  • Kang, Han-Ok;Han, Hun Sik;Kim, Young-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • The vessel of integral reactor contains its major primary components such as the fuel and core, pumps, steam generators, and a pressurizer, so its size is proportional to the required space for the installation of each component. The steam generators take up the largest volume of internal space of reactor vessel and their volumes is substantial for the overall size of reactor vessel. Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall cost for the components and related facilities. A printed circuit heat exchanger is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. The overall heat transfer area and pressure drops are evaluated for the steam generator based on the concept of the printed circuit heat exchanger in this study. As the printed circuit heat exchanger is known to have much larger heat transfer area density per unit volume, we can expect significantly reduced steam generator compared to former shell and tube type of steam generator. For the introduction of new steam generator, two design requirements are considered: flow area ratio between primary and secondary flow paths, and secondary side parallel channel flow oscillation. The results show that the overall volume of the steam generator can be significantly reduced with printed circuit type of steam generator.

A case report of a surgical guide fabricated via intraoral scanning-based implant planning and wax-based rapid prototyping (구강스캐너를 이용한 임플란트 수술 계획 및 왁스 기반 쾌속조형법으로 제작한 수술용 가이드 증례)

  • Shin, Jong-Hoon;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.244-249
    • /
    • 2015
  • With the recent progress of digital technology, the computer guided surgery utilizing a guide template in the placement of implant has been actively performed, and the method employing the intraoral scanner at the implant prosthesis introduced. Fabrication method of the guide template can be largely classified into design-related rapid prototyping (RP) system and vector milling system, and each of the method has its own weakness in the clinical application despite of excellent accuracy. Thus, in this case study, a working model was fabricated by the wax RP technology using images acquired by CBCT and an intraoral scanner, and the metal bushing was picked up with orthodontic resin cast upon the wax model. Using this method, a surgical guide template was fabricated and used in surgery. From this, we could obtain a satisfactory outcome clinically in the implant placement and the fabrication of the final prostheses and thus report this case herein.

Minimizing the Water Leaching of Zincborate Glass by La2O3 Addition for LTCC Applications

  • Hong, Seung-Hyuk;Jung, Eun-Hee;Oh, Chang-Yong;Kim, Shin;Shin, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.157-160
    • /
    • 2008
  • A series of $La_2O_3$-added zincborosilicate glasses was fabricated by systematically varying $La_2O_3$ addition up to 15mol% under the constraint of a ZnO:$B_2O_3$ ratio of 1:2. The degree of water leaching after ball milling of the prepared glasses in water medium was relatively quantified by the change in zinc peak intensity in energy dispersive spectroscopy. 8mol% of $La_2O_3$ was the most efficient addition in inhibiting the glass leaching by water. The role of $La_2O_3$ in inhibiting the leaching was explained in terms of change of structural units in the glass network. When the optimum 8mol% $La_2O_3$-added ZnO-$B_2O_3$ glass was used as sintering aid for $Al_2O_3$, the fabricated alumina-glass composite at $875^{\circ}C$ demonstrated dielectric constant of 6.11 and quality factor of 15470 GHz, indicating the potential of leaching-minimized $La_2O_3-ZnO-B_2O_3$ glass for application to low temperature co-firing ceramic technology.

Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders (NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조)

  • Jeon, Ki Cheol;Lee, Han-Eol;Yim, Da-Mi;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

The Structural and Optical Properties of ZnO : $Al_{2}O_{3}$ Compound by Reaction Sintering (Reaction Sintering에 의한 ZnO : $Al_{2}O_{3}$ 합성물의 구조 및 광학적 특성)

  • Kang, Byeong-Mo;Park, Gye-Choon;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-224
    • /
    • 1998
  • 2nO and $Al_{2}O_{3}$ powder were weighed in 1 : 1 mole ratio and ball-milled in ethanol for 3 h. Dried mixture were pressed and then sintered at $900^{\circ}C{\sim}1200^{\circ}C$ for 3 h in vacuum($3{\times}10^{-5}$ Torr). According to XRD, remnant ZnO and $Al_{2}O_{3}$ not converted to $ZnAl_{2}O_{4}$ were observed up to $1100^{\circ}C$, which were completely changed to$ZnAl_{2}O_{4}$ ternary compound at $1200^{\circ}C$. Optical bandgap is calculated at 4.75 eV. With increasing sintering temperature, PL spectrums shifted to shorter wavelengths and are appeared 430nm at $1200^{\circ}C$.

  • PDF

Current Status and Prospect of Qauality Evaluation in Maize (옥수수의 품질평가 현황과 전망)

  • 김선림;문현귀;류용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.107-123
    • /
    • 2002
  • This paper is intented to present a information of various aspects of quality related characteristics and standards for grades in maize. Maize is world's one of the three most popular cereal crops and a primary energy supplement and can contribute up to 30, 60, and 98% of the dairy diet's protein, net energy, and starch, respectively. Maize is also processed into industrial goods by wet or dry milling. Sweet corn is a leader among vegetable crops and its production for fresh or processing markets is a major industry in many countries. Over the years, the combined efforts of breeders and geneticists, biochemists, food scientists, and others have helped bring us to the point where we understand issues related to sweet corn quality. Traditional criteria for selecting corn hybrids have been based primarily on agronomic factors, including grain production, disease resistance, drought tolerance, and storage characteristics. Little emphasis has been placed on the quality and nutritional values of corn. Although there is widespread interest for value-enhanced corns have increased tremendously in the last five years, there is limited information available on the production and comparing the quality attributes of specialty grains with those of normal yellow dent corn. Most countries have developed national maize standards, aiming to provide a framework for trade, both internal and external. Where trading involves direct choice and price negotiation in front of the commodity, grading standards are rarely employed; quality is assessed visually and is influenced by end-use, and the price is determined more by local rather than national factors. The use of an agreed standard will provide an unambiguous description of the quality of the consignment and assist in the formation of a legally-binding contract. Standards can also be seen to protect consumers rights through setting limits to the amount of unsuitable or noxious material.

Incidence and Predictors of Hand-Arm Musculoskeletal Complaints among Vibration-exposed African Cassava and Corn Millers

  • Mbutshu, Lukuke Hendrick;Malonga, Kaj Francoise;Ngatu, Nlandu Roger;Kanbara, Sakiko;Longo-Mbenza, Benjamin;Suganuma, Narufumi
    • Safety and Health at Work
    • /
    • v.5 no.3
    • /
    • pp.131-135
    • /
    • 2014
  • Background: Cassava and corn milling is a growing small-scale enterprise in Africa. We aimed to determine the incidence of hand-arm musculoskeletal complaints among vibration-exposed Congolese cassava and corn millers in the previous 12 months. Methods: A cross-sectional study was conducted, prior to a follow-up study, from March to May 2013 among cassava/corn millers in Lubumbashi, Democratic Republic of Congo, in which 365 millers age-matched to 365 civil workers anonymously answered a questionnaire. Results: Overall incidence of hand-arm musculoskeletal complaints was 25.8% in millers (vs. 5.2% in civil workers; p < 0.001). The risk of experiencing musculoskeletal symptoms was seven times higher in millers [vs. civil workers; odds ratio (OR) = 7.10; 95% confidence interval (CI): 4.03-12.50; p < 0.0001]; 2.4 times higher in smoking millers (vs. smoking civil office workers; OR = 2.36; 95% CI: 1.42-3.88; p < 0.001); 3.6 times higher in millers with longer daily exposure (> 8 hours; vs. those working ${\leq}8$ hours; OR = 3.56; 95% CI: 1.93-3.61; p = 0.026); and 7.4 times higher in young millers (vs. older millers, OR = 7.39; 95% CI: 1.29-75.52; p < 0.001). Smoking, number of cigarettes, and daily exposure duration were positively correlated with musculoskeletal complaints. Conclusion: This study revealed a relatively high incidence of musculoskeletal complaints among African cassava and corn millers. The use of anti-vibration protective equipment and the regulation of this hazardous occupation may reduce the burden of musculoskeletal disorders in millers.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering

  • Jeon, Nari;Moon, Kyoung-Seok;Rout, Dibyranjan;Kang, Suk-Joong L.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.485-492
    • /
    • 2012
  • Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.