• 제목/요약/키워드: Up endmilling

검색결과 11건 처리시간 0.025초

인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 - (II) 하향엔드밀링 (Cutting Characteristics Variation of Inconel 718 in End Millig with different Helix Angles -(II) Down End Milling)

  • 태원익;이선호;최원식;양승한;이영문
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.814-817
    • /
    • 2000
  • This paper has two purposes. One is to investigate the effect of the helix angle of endmilling cutter on the cutting haracteristics of inconel 718 in down endmilling. To this end a newly developed cutting force model in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. The other is to compare the down endmilling characteristics of lnconel 718 with those of the up milling previously presented. In up endmilling as the helix angle becomes larger the radial and tangential components of the specific cutting force ($K_1 and K_r$) decrease. While in down milling $K_1 and K_r$ become smaller as the helix angle decrease.

  • PDF

인코넬 718의 상향 및 하향 엔드밀링시 헬릭스각에 따른 절삭력 변화 (Cutting Force Variation of Inconel 718 in Up and Down Endmilling with Different Helix Angles.)

  • 이영문;이선호;태원익;권오진;최봉환
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, a mechanistic model of cutting force components in up and down end milling process is presented. Using this cutting force model of 4-tooth endmills with various helix angles, cutting force variation of inconel 718 has been predicted. Predicted values of cutting force components are coincide well with the measured ones. As helix angle increases, overlapping effects of the active cutting edges increase. In up endmilling the magnitudes of radial and feed cutting force componts FX and FY are lowest when the helix angle is $40\{\circ}$, but in down endmilling the magnitudes of these values increase slightly as helix angle becomes large.

  • PDF

인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 -(I) 상향엔드밀링 (Cutting Characteristics Variation of Inconel 718 in End Milling with different Helix Angles -(I) Up End Milling)

  • 태원익;이선호;최원식;양승한;이영문
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.947-950
    • /
    • 2000
  • The purpose of this paper is to investigate the effect of the helix angle of endmilling cutter on the cutting characteristics of inconel 718 in up endmilling. To this end cutters with helix angle of $20^\circ$, $30^\circ$, $40^\circ$ and $50^\circ$ degree have been prepared. And a modified cutting force model in up end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase.

  • PDF

마이크로 엔드밀링에서 가공깊이에 따른 가공변질층의 특성 (The Characteristics of Damaged Layer According to Depth of Cut in Micro Endmilling)

  • 이종환;권동희;박진효;김병민;정융호;강명창;이성용;김정석
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-83
    • /
    • 2007
  • The study on damaged layer is necessary for machinability improvement in micro machining. The damaged layer in metal cutting is derived from plastic deformation and transformation of metal structure. The damaged layer affects micro mold life and micro machine parts. In this study, the damaged layer of micro machined surface of copper is evaluated according to various machining condition. The damaged layer structure and metallurgical characteristics are measured by optical microscope, and evaluated by cutting forces and surface roughness. The scale of this damaged layer depends on cutting process parameters and machining environments. By experimental results, depth of damaged layer was increased with increasing of cutting depth, also the damaged layer is less occurred in down-milling compared to up-milling during micro endmilling operation.

볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도 (Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

등가경사절삭 시스템에 의한 Inconel 718 앤드밀링 공정의 전단 및 마찰특성 해석I -상향 엔드밀링- (The Shear and Friction characteristics Analysis of Inconel 718 End-millingIusing Equivalent Oblique Cutting System -Up endmilling-)

  • 이영문;최원식;송태성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.887-890
    • /
    • 2001
  • In end milling process the underformed chip thickness and the cutting force components very periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying underformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting mode. According to this analysis, when cutting Inconel 718.61% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during up-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;김선일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF

Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차의 영향 (Effects of Cutter Runout on Cutting Forces in Up-endmilling of Inconel 718)

  • 이영문;양승한;장승일;백승기;김선일;이동식
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.45-52
    • /
    • 2002
  • In an end milling process, the undeformed chip section area and cutting forces vary periodically with the phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to the cutter runout and tool shape error. In the current study, a method of estimating the real undeformed chip section area which reflects the cutter runout and tool shape error is presented during up-end milling processes of Inconel 718. The specific cutting forces, $K_r$ and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area, respectively. Both of the $K_{r}$ and $K_t$ values become smaller as the helix angle increases from $30^{\circ}$ to $40^{\circ}$. Whereas they become larger as the helix angle increases from $40^{\circ}$ to $50^{\circ}$. The $K_r$ and $K_t$ values show a tendency to decrease with increase of the modified chip section area.a.

Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during down-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;이동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

등가경사절삭 시스템에 의한 Inconel 718 엔드밀링 공정의 전단 및 마찰특성 해석 I -상향 엔드밀링- (The Shear and Friction Characteristics Analysis of Inconel 718 during End-milling process using Equivalent Oblique Cutting System I -Up Endmilling-)

  • 이영문;양승한;최원식;송태성;권오진;최용환
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.79-86
    • /
    • 2002
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting system. According to this analysis, when cutting Inconel 718, 61, 64 and 55% of the total energy is consumed in the shear process with the helix angle 30$^{\circ}$, 40$^{\circ}$ and 50$^{\circ}$ respectively, and the balance is consumed in the friction process. With the helix angle of 40$^{\circ}$ the specific cutting energy consumed is smaller than with the helix angle 30$^{\circ}$ and 50$^{\circ}$.