• 제목/요약/키워드: Up end milling

검색결과 62건 처리시간 0.022초

엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정 (Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling)

  • 류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

Shear Process and Frictional Characteristics in Down-end Milling

  • Lee, Young-Moon;Jang, Seung-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.19-24
    • /
    • 2003
  • In end milling process, which is characterized by the use of a rotating tool, the undeformed chip thickness varies periodically with phase change of the tool. Although many efforts have concentrated on the study of end milling process, the analysis of shear and chip-tool friction behaviors has not been reported. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process are replaced with the equivalent ones of oblique cutting. Then it is possible to simulate the shear and the chip-tool friction characteristics of a down-end milling process. The proposed model has been verified through two sets of cutting tests i.e., down-end milling and the equivalent oblique cutting tests. The experimental results show that the proposed model is suitable to analyze the shear and chip-tool frictional characteristics of down-end milling process. The specific cutting energy decreases with increase in equivalent undeformed chip thickness in a down-end milling process.

엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화 (Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 - (II) 하향엔드밀링 (Cutting Characteristics Variation of Inconel 718 in End Millig with different Helix Angles -(II) Down End Milling)

  • 태원익;이선호;최원식;양승한;이영문
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.814-817
    • /
    • 2000
  • This paper has two purposes. One is to investigate the effect of the helix angle of endmilling cutter on the cutting haracteristics of inconel 718 in down endmilling. To this end a newly developed cutting force model in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. The other is to compare the down endmilling characteristics of lnconel 718 with those of the up milling previously presented. In up endmilling as the helix angle becomes larger the radial and tangential components of the specific cutting force ($K_1 and K_r$) decrease. While in down milling $K_1 and K_r$ become smaller as the helix angle decrease.

  • PDF

하향엔드밀링시 헬릭스각에 따른 전단 및 마찰특성변화 (Shear and Friction Characteristics in Down-End Milling with Different Helix Angles)

  • 이영문;장승일;서민교;손정우
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.17-24
    • /
    • 2004
  • In end milling process, undeformed chip thickness and cutting forces vary periodically with phase change of the tool. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting to this. In the current study, a down-end milling process has been replaced with the equivalent oblique cutting process. And shear and tool-chip friction characteristics variation of SM45C steel has been studied using the end-mills of different helix angles. The specific shear and friction energy consumed with helix angle of $50^{\circ}$ is somewhat larger than those of$30^{\circ}$ and $40^{\circ}$. The specific shear energy consumed is about 76-77% of the specific cutting energy regardless the helix angles.

Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차 (Effects of cutter runout on cutting forces during down-endmilling of Inconel718)

  • 이영문;양승한;장승일;백승기;이동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

등가경사절삭 시스템에 의한 Inconel 718 엔드밀링 공정의 전단 및 마찰특성 해석 I -상향 엔드밀링- (The Shear and Friction Characteristics Analysis of Inconel 718 during End-milling process using Equivalent Oblique Cutting System I -Up Endmilling-)

  • 이영문;양승한;최원식;송태성;권오진;최용환
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.79-86
    • /
    • 2002
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting system. According to this analysis, when cutting Inconel 718, 61, 64 and 55% of the total energy is consumed in the shear process with the helix angle 30$^{\circ}$, 40$^{\circ}$ and 50$^{\circ}$ respectively, and the balance is consumed in the friction process. With the helix angle of 40$^{\circ}$ the specific cutting energy consumed is smaller than with the helix angle 30$^{\circ}$ and 50$^{\circ}$.

가공경로가 밀링가공면의 기하학적 특성에 미치는 영향 (Effects of the Tool Path on the Geometric Characteristics of Milled Surface)

  • 박문진;김강
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF

엔드밀링 절삭력에 미치는 공구형상오차 I -상향 엔드밀링- (Effects of cutter runout on end milling forces I -Up and milling-)

  • 이영문;최원식;송태성;권오진;백승기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.985-988
    • /
    • 1997
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study ,a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. Size effect was identified from the analysis of specific cutting resistance obtained by using the modified undeformed chip section area.

  • PDF

밀링가공에서 부등각 엔드밀의 절삭특성 평가 (An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills)

  • 이상복;김원일;왕덕현;김실경
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.