• Title/Summary/Keyword: Untransformed cell

Search Result 8, Processing Time 0.028 seconds

Comparison of Uptake of Ionic and Tf-bound Fe-59 and Ga-67 in Transformed and Untransformed Cells (변형세포와 비변형세포에서 이온형과 Transferrin 결합형 Fe-59와 Ga-67 섭취율의 비교)

  • Sohn, Myung-Hee;Lee, Young-Hwan;Lee, Sang-Yong;Chung, Gyung-Ho;Han, Young-Min;Kim, Jong-Soo;Choi, Ki-Chul;Yim, Chang-Yeol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.145-151
    • /
    • 1996
  • Pathways both mediated by and independent of transferrin(Tf) and the TfR have been described for the accumulation of iron. Although it is not clear whether the same systems take up iron and gallium, these pathways may suggest the contention that uptake of Ga-67 can, in fact, occur by both Tf-independent and Tf-dependent systems and may share with Fe-59 in part the same mechanism for uptake. The predominant system by which uptake of both radiometals occurs may be different in the degree of the transformation of tumor. Transformed(MMSV/3T3) and untransformed(BALB/3T3) cells were incubated with luM of Ga-67-citrate of Fe-59-chloride for 15 min. at $37^{\circ}C$ in either the presence or absence of Tf. After then, the monolayers were washed with HBSS or PBS, and the cells were solubilized in 1% SDS for gamma well counting and protein determinations. There were similarities, as well as differences, in the pattern of uptake of Fe-59 and Ga-67 presented both in ionic from and as bound to Tf. Both radiometals appeared gain to cells in either ionic or Tf-bound forms. Transformed cells appeared to accumulate more radiometal, either Ga-67 or Fe-59 in the presence of Tf than do the their untransforemd counterparts. Conversly the presentation of either radiometal in ionic form resulted in significantly greater accumulation of metal by the untransformed cells than those transformed. The efficiency for uptake of Ga-67 or Fe-59 in the absence of Tf was greater than for uptake of the Ga-Tf or Fe-Tf. However, the magnitude of difference in efficiency of uptake was greater for Fe-59(10-fold) than for Ga-67 (3-fold). Our results Supports the theory that both Tf-independent and Tf-dependent systems for the uptake of Ga-67 both systems operate oppositely between transformed cells and those untransformed, with uptake by the predominating in transformed cells by the Tf-mediated system and in untransformed cells by the Tf-independent. The uptake of Ga-67 by tumor may share with Fe-59 in part the same mechanism.

  • PDF

Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation

  • Choi, Eun Young;Shin, Kyeong-Cheol;Lee, Jinho;Kwon, Taeg Kyu;Kim, Shin;Park, Jong-Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5883-5887
    • /
    • 2015
  • Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methylpiperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-${\gamma}1$. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU-193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways.

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.

Facile Synthesis and Radioiodine Labeling of Hypericin

  • Kim, Sang-Wook;Park, Jeong-Hoon;Yang, Seung-Dae;Hur, Min-Goo;Kim, Yu-Seok;Chai, Jong-Seo;Kim, Young-Soon;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1147-1150
    • /
    • 2004
  • Hypericin (1,3,4,6,8,13-hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione), an antidepressant which is also known to be a potent protein kinase C (PKC) inhibitor was synthesized as a precursor for radioiodine labeling via two step reactions. Malignant glioma cells express higher PKC activity compared to untransformed glial cell. Here we report the synthesis and radioiodine labeling of hypericin as a potential brain tumor imaging radiopharmaceutical. The reference compound, 2-iodohypericin, and its radiolabelled analogues, 2-[$^{123}I$]iodohypericin and 2-[$^{124}I$]iodohypericin have been prepared by the reaction of hypericin with NaI or [$^{123}I$]NaI or [$^{124}I$]NaI. The labeling yield was 60-65% for each analogue and the optimal reaction time was 10 min. The purification and isolation of the labelled products were achieved by a reversed-phase HPLC.

α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells

  • Ittiudomrak, Teeranai;Puthong, Songchan;Roytrakul, Sittiruk;Chanchao, Chanpen
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.167-179
    • /
    • 2019
  • Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, ${\alpha}$-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. ${\alpha}$-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with ${\alpha}$-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas ${\alpha}$-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in ${\alpha}$-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both ${\alpha}$-mangostin and apigenin arrested the cell cycle at the $G_2/M$ phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and ${\alpha}$-mangostin-treated SKOV-3 cells, respectively. ${\alpha}$-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and ${\alpha}$-mangostin likely being involved with inflammation.

Bioequivalence of Broadcef Capsule to Cefradine Yuhan Capsule (Cephradine 500 mg) (유한세프라딘 캅셀(세프라딘 500 mg)에 대한 브로드세프 캅셀의 생물학적 동등성)

  • Cho, Hea-Young;Lee, Suk;Kang, Hyun-Ah;Oh, In-Joon;Lim, Dong-Koo;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2002
  • Cephradine is a first generation cephalosporin and has broad spectrum antibacterial activity against gram-positive and gram-negative microorganisms, through inhibition of bacterial cell wall synthesis. Cephradine is useful for treatment of infections of the urinary and respiratory tract, skin and soft tissues. The purpose of the present study was to evaluate the bioequivalence of two cephradine capsules, Cefradine Yuhan (YuHan Corporation) and Broadcef (Ilsung Pharmaceuticals Co. Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). The cephradine release from the two cephradine capsules in vitro was tested using KP VII Apparatus II method with various different kinds of dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty normal male volunteers, $23.10{\pm}2.90$ years in age and $67.69{\pm}8.04\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one capsule containing 500 mg as cephradine was orally administered, blood was taken at predetermined time intervals and the concentrations of cephradine in serum were determined using HPLC method with UV detector. The dissolution profiles of two cephradine capsules were very similar at all dissolution media. Besides, the pharmacokinetic parameters such as $AVC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AVC_t\;and\;C_{max}$ and untransformed $T_{max}$. The results showed that the differences in $AVC_t,\;C_{max}\;and\;T_{max}$ between two capsules based on the Cefradine Yuhan were -2.87%, -0.96% and -4.85%, respectively. There were no sequence effects between two capsules in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of 1og(0.8) to log(1.25) $(e.g.,\;log(0.93){\sim}log(1.02)\;and\;log(0.88){\sim}log(1.13)\;for \;AVC_t\;and\;C_{max},\;respectively)$. The 90% confidence interval using untransformed data was within ${\pm}20%$ $(e.g., \;-17.54{\sim}7.78\;for\;T_{max})$. All parameters met the criteria of KFDA guideline for bioequivalence, indicating that Broadcef capsule is bioequivalent to Cefradine Yuhan capsule.

Mitotic Stability of Heterologous $\alpha$-Amylase Gene in Starch-Fermenting Yeast (전분발효 효모에서의 외래 $\alpha$-Amylase 유전자의 세포분열시 안정성 증진)

  • Kim, Jung-Hee;Kim, Keun;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.271-279
    • /
    • 1994
  • To develop a yeast strain which stably secretes both $\alpha$-amylase and glucoamylase and therefore is able to convert starch directly to ethanol, a mouse salivary $\alpha$-amylase cDNA gene with a yeast alcohol dehydrogenase I promoter has been introduced into the cell of a Saccharomyces diactaticus hybrid strain secreting only glucoamylase. To secrete both enzymes more stably without loss of the $\alpha$-amylase gene during a cell-multiplication, an integrating plasmid vector containing $\alpha$-amylase gene was constructed and introduced into the yeast cell. The results showed that the linearized form of the integrating vector was superior in the transformation efficiency and the rate of the expression of the $\alpha$-amylase gene than the circular type of the vector. The yeast transformant having a linearized plasmid vector exhibited higher mitotic stability than the yeast transformant habouring episomat plasmid vector. The transformant containing the linearized vector producing both $\alpha$-amylase and glucoamylase exhibited 2-3 times more amylolytic activity than the original untransformed strain secreting only glucoamylase.

  • PDF

Bioequivalence of S-napine Tablet 10 mg to Alesion Tablet(Epinastine HCl 10 mg) (알레지온 정(염산에피나스틴 10mg)에 대한 에스나핀 정 10밀리그람의 생물학적동등성)

  • Kang, Hyun-Ah;Cho, Hea-Young;Yoon, Hwa;Kim, Se-Mi;Kim, Dong-Ho;Park, Sun-Ae;Kim, Hwan-Ho;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.405-411
    • /
    • 2006
  • Epinastine is an antiallergic drug effective for bronchial asthma, allergic rhinitis, urticaria and dermatitis. Epinastine is topically active, direct H1-receptor antagonist and an inhibitor of the release of histamine from the mast cell. The purpose of the present study was to evaluate the bioequivalence of two epinastine hydrochloride tablets, Alesion Tablet (Boehringer Ingelheim Korea Ltd.) and S-napine tablet 10 mg(Sam Chun Dang Pharm. Co., Ltd), according to the guidelines of the Korea Food and Drug Administration(KFDA). The release of epinastine from the two epinastine formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media(pH 1.2, 4.0, 6.8 buffer solution and water). Twenty six healthy male subjects, $23.35{\pm}1.57$ years in age and $66.29{\pm}10.61kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two tablets containing 20 mg as epinastine hydrochloride was orally administered, blood was taken at predetermined time intervals and the concentrations of epinastine in serum were determined using HPLC with UV detector. The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t.\;C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, Alesion tablet, were 1.50, 1.46 and -13.48% for $AUC_t,\;C_{max}\;and\;T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25(e.g., log 0.95$\sim$log 1.12 and log 0.93$\sim$log 1.10 for $AUC_t\;and\;C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating S-napine tablet 10 mg was bioequivalent to Alesion tablet.