• 제목/요약/키워드: Unsupervised method

Search Result 402, Processing Time 0.03 seconds

Unsupervised Cluster Estimation using Subtractive HyperBox Algorithm (차감 HyperBox 알고리듬을 이용한 Unsupervised 클러스터 추정)

  • Moon, Seong-Hwan;Choi, Byeong-Geol;Kang, Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.87-90
    • /
    • 1997
  • Mountain Method의 다른 형태인 Subtractive 클러스터링 알고리듬은 계산이 간단하고 기존의 클러스터링 방법들과는 달리 초기 클러스터 중심의 개수 선정이 필요 없기 때문에 클러스터를 추정하는데 효과적인 알고리듬이다. 또한 클러스터의 간격을 결정하는 파라미터의 값에 따라 클러스터의 개수를 다르게 할 수 있다. 그러나 이 파라미터에 의해 동일한 그룹(Class)내에서 여러 개의 클러스터 중심이 발생될 수도 있다. 본 논문에서는 Subtractive HyperBox 알고리듬을 사용하여 이 파라미터의 영향을 줄이고 발생한 클러스터 중심이 속한 그룹의 경계를 판정함으로서 같은 그룹내에서 하나의 클러스터만 발생하도록 하고, 순차적으로 클러스터링 한 후 결과를 Subtractive 클러스터링 알고리듬과 비교하여 보았다.

  • PDF

Neural Learning Algorithms for Independent Component Analysis

  • Choi, Seung-Jin
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.24-33
    • /
    • 1998
  • Independent Component analysis (ICA) is a new statistical method for extracting statistically independent components from their linear instantaneous mixtures which are generated by an unknown linear generative model. The recognition model is learned in unsupervised manner so that the recovered signals by the recognition model become the possibly scaled estimates of original source signals. This paper addresses the neural learning approach to ICA. As recognition models a linear feedforward network and a linear feedback network are considered. Associated learning algorithms for both networks are derived from maximum likelihood and information-theoretic approaches, using natural Riemannian gradient [1]. Theoretical results are confirmed by extensive computer simulations.

  • PDF

Unsupervised Classiflcation of Multiple Attributes via Autoassociative Neural Network

  • Kamioka, Reina;Kurata, Kouji;Hiraoka, Kazuyuki;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.798-801
    • /
    • 2002
  • This paper proposes unsupervised classification of multiple attributes via five-layer autoassociative neural network with bottleneck layer. In the conventional methods, high dimensional data are compressed into low dimensional data at bottleneck layer and then feature extraction is performed (Fig.1). In contrast, in the proposed method, analog data is compressed into digital data. Furthermore bottleneck layer is divided into two segments so that each attribute, which is a discrete value, is extracted in corresponding segment (Fig.2).

  • PDF

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

Study on Application of Neural Network for Unsupervised Training of Remote Sensing Data (신경망을 이용한 원격탐사자료의 군집화 기법 연구)

  • 김광은;이태섭;채효석
    • Spatial Information Research
    • /
    • v.2 no.2
    • /
    • pp.175-188
    • /
    • 1994
  • A competitive learning network was proposed as unsupervised training method of remote sensing data, Its performance and computational re¬quirements were compared with conventional clustering techniques such as Se¬quential and K - Means. An airborne remote sensing data set was used to study the performance of these classifiers. The proposed algorithm required a little more computational time than the conventional techniques. However, the perform¬ance of competitive learning network algorithm was found to be slightly more than those of Sequential and K - Means clustering techniques.

  • PDF

Determining the Optimal Number of Signal Clusters Using Iterative HMM Classification

  • Ernest, Duker Junior;Kim, Yoon Joong
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2018
  • In this study, we propose an iterative clustering algorithm that automatically clusters a set of voice signal data without a label into an optimal number of clusters and generates hmm model for each cluster. In the clustering process, the likelihood calculations of the clusters are performed using iterative hmm learning and testing while varying the number of clusters for given data, and the maximum likelihood estimation method is used to determine the optimal number of clusters. We tested the effectiveness of this clustering algorithm on a small-vocabulary digit clustering task by mapping the unsupervised decoded output of the optimal cluster to the ground-truth transcription, we found out that they were highly correlated.

An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

  • Frigui, Hichem;Bchir, Ouiem;Baili, Naouel
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.254-268
    • /
    • 2013
  • For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-type objective function. We highlight the advantages and disadvantages of each method. In addition to the completely unsupervised algorithms, we also provide an overview of some semi-supervised fuzzy kernel clustering algorithms. These algorithms use partial supervision information to guide the optimization process and avoid local minima. We also provide an overview of the different approaches that have been used to extend kernel clustering to handle very large data sets.

Application of Landsat ETM images for spatial property analysis of tidal flat in west Seohan bay, North Korea

  • Jo, Myung-Hee;Kim, Sung-Jae;Jo, Wha-Ryong;Lee, Yun-Hwa;Yoo, Hong-Ryoug
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1415-1417
    • /
    • 2003
  • In this study, as the passing of a year, the changes of tidal flat area in Seohan Bay, North Korea was monitored through using Landsat ETM Data and the ancient topological map. The map to present tidal flat distribution characteristic based on the ancient topographical map (1918) was constructed as GIS DB. In addition, a tidal flat distribution map was estimated by using the satellite images with unsupervised classification method. Even though it is difficult to approach to study area, it was possible to gain the data and to monitor the change of the coast tidal flat by comparing to area change yielded.

  • PDF

The Discrimination of Fault Type by Unsupervised Neural Network (자율 학습 신경회로망을 이용한 고장상 선은 알고리즘)

  • Lee Jae Wook;Choi Chang Yeol;Jang Byung Tae;Lee Myung Hee;No Jang Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.384-387
    • /
    • 2004
  • The direction and the type of a fault on a transmission line need to be identified rapidly and correctly, The work described in this paper addresses the problem encountered by a conventional algorithm in a fault type classification in double circuit line, this arises due to a mutual coupling and CT saturation under the fault condition. We present an approach to identify fault type with novel neural network on double circuit transmission line. The neural network based on combined unsupervised training method provides the ability classify the fault type by different patterns of the associated voltages and currents.

  • PDF

Unsupervised Image Classification using Region-growing Segmentation based on CN-chain

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.215-225
    • /
    • 2004
  • A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using the conventional agglomerative approach. Using simulation data, the proposed method was compared with another hierarchical clustering technique based on 'mutual closest neighbor.' The experimental results show that the new approach proposed in this study considerably increases in computational efficiency for larger images with a low number of bands. The technique was then applied to classify the land-cover types using the remotely-sensed data acquired from the Korean peninsula.