• Title/Summary/Keyword: Unsupervised algorithm

Search Result 279, Processing Time 0.027 seconds

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Development of Brain-Style Intelligent Information Processing Algorithm Through the Merge of Supervised and Unsupervised Learning I: Generation of Exemplar Patterns for Training (교사학습과 비교사 학습의 접목에 의한 두뇌방식의 지능 정보 처리 알고리즘I: 학습패턴의 생성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.56-62
    • /
    • 2004
  • In the case that we do not have enough number of training patterns because of limitation such as time consuming, economic problem, and so on, we geneterate a new patterns using the brain-style Information processing algorithm, that is, supervised and unsupervised learning methods.

  • PDF

ZPerformance Improvement of ART2 by Two-Stage Learning on Circularly Ordered Learning Sequence (순환 배열된 학습 데이터의 이 단계 학습에 의한 ART2 의 성능 향상)

  • 박영태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.102-108
    • /
    • 1996
  • Adaptive resonance theory (ART2) characterized by its built-in mechanism of handling the stability-plasticity switching and by the adaptive learning without forgetting informations learned in the past, is based on an unsupervised template matching. We propose an improved tow-stage learning algorithm for aRT2: the original unsupervised learning followed by a new supervised learning. Each of the output nodes, after the unsupervised learning, is labeled according to the category informations to reinforce the template pattern associated with the target output node belonging to the same category some dominant classes from exhausting a finite number of template patterns in ART2 inefficiently. Experimental results on a set of 2545 FLIR images show that the ART2 trained by the two-stage learning algorithm yields better accuracy than the original ART2, regardless of th esize of the network and the methods of evaluating the accuracy. This improvement shows the effectiveness of the two-stage learning process.

  • PDF

Anomaly Detection in Sensor Data

  • Kim, Jong-Min;Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2018
  • Purpose: The purpose of this study is to set up an anomaly detection criteria for sensor data coming from a motorcycle. Methods: Five sensor values for accelerator pedal, engine rpm, transmission rpm, gear and speed are obtained every 0.02 second from a motorcycle. Exploratory data analysis is used to find any pattern in the data. Traditional process control methods such as X control chart and time series models are fitted to find any anomaly behavior in the data. Finally unsupervised learning algorithm such as k-means clustering is used to find any anomaly spot in the sensor data. Results: According to exploratory data analysis, the distribution of accelerator pedal sensor values is very much skewed to the left. The motorcycle seemed to have been driven in a city at speed less than 45 kilometers per hour. Traditional process control charts such as X control chart fail due to severe autocorrelation in each sensor data. However, ARIMA model found three abnormal points where they are beyond 2 sigma limits in the control chart. We applied a copula based Markov chain to perform statistical process control for correlated observations. Copula based Markov model found anomaly behavior in the similar places as ARIMA model. In an unsupervised learning algorithm, large sensor values get subdivided into two, three, and four disjoint regions. So extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior in the sensor values. Conclusion: Exploratory data analysis is useful to find any pattern in the sensor data. Process control chart using ARIMA and Joe's copula based Markov model also give warnings near similar places in the data. Unsupervised learning algorithm shows us that the extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior.

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

Analysis on the Distribution of RF Threats Using Unsupervised Learning Techniques (비지도 학습 기법을 사용한 RF 위협의 분포 분석)

  • Kim, Chulpyo;Noh, Sanguk;Park, So Ryoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.346-355
    • /
    • 2016
  • In this paper, we propose a method to analyze the clusters of RF threats emitting electrical signals based on collected signal variables in integrated electronic warfare environments. We first analyze the signal variables collected by an electronic warfare receiver, and construct a model based on variables showing the properties of threats. To visualize the distribution of RF threats and reversely identify them, we use k-means clustering algorithm and self-organizing map (SOM) algorithm, which are belonging to unsupervised learning techniques. Through the resulting model compiled by k-means clustering and SOM algorithms, the RF threats can be classified into one of the distribution of RF threats. In an experiment, we measure the accuracy of classification results using the algorithms, and verify the resulting model that could be used to visually recognize the distribution of RF threats.

Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation (무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구)

  • Park, Seongsik;Lee, Hyun-Joo;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

A Study on Handwritten Digit Categorization of RAM-based Neural Network (RAM 기반 신경망을 이용한 필기체 숫자 분류 연구)

  • Park, Sang-Moo;Kang, Man-Mo;Eom, Seong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • A RAM-based neural network is a weightless neural network based on binary neural network(BNN) which is efficient neural network with a one-shot learning. RAM-based neural network has multiful information bits and store counts of training in BNN. Supervised learning based on the RAM-based neural network has the excellent performance in pattern recognition but in pattern categorization with unsupervised learning as unsuitable. In this paper, we propose a unsupervised learning algorithm in the RAM-based neural network to perform pattern categorization. By the proposed unsupervised learning algorithm, RAM-based neural network create categories depending on the input pattern by itself. Therefore, RAM-based neural network for supervised learning and unsupervised learning should proof of all possible complex models. The training data for experiments provided by the MNIST offline handwritten digits which is consist of 0 to 9 multi-pattern.

Utilizing Principal Component Analysis in Unsupervised Classification Based on Remote Sensing Data

  • Lee, Byung-Gul;Kang, In-Joan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.33-36
    • /
    • 2003
  • Principal component analysis (PCA) was used to improve image classification by the unsupervised classification techniques, the K-means. To do this, I selected a Landsat TM scene of Jeju Island, Korea and proposed two methods for PCA: unstandardized PCA (UPCA) and standardized PCA (SPCA). The estimated accuracy of the image classification of Jeju area was computed by error matrix. The error matrix was derived from three unsupervised classification methods. Error matrices indicated that classifications done on the first three principal components for UPCA and SPCA of the scene were more accurate than those done on the seven bands of TM data and that also the results of UPCA and SPCA were better than those of the raw Landsat TM data. The classification of TM data by the K-means algorithm was particularly poor at distinguishing different land covers on the island. From the classification results, we also found that the principal component based classifications had characteristics independent of the unsupervised techniques (numerical algorithms) while the TM data based classifications were very dependent upon the techniques. This means that PCA data has uniform characteristics for image classification that are less affected by choice of classification scheme. In the results, we also found that UPCA results are better than SPCA since UPCA has wider range of digital number of an image.

  • PDF