• 제목/요약/키워드: Unsupervised Transfer Learning

검색결과 12건 처리시간 0.024초

Unsupervised Transfer Learning for Plant Anomaly Recognition

  • Xu, Mingle;Yoon, Sook;Lee, Jaesu;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제11권4호
    • /
    • pp.30-37
    • /
    • 2022
  • Disease threatens plant growth and recognizing the type of disease is essential to making a remedy. In recent years, deep learning has witnessed a significant improvement for this task, however, a large volume of labeled images is one of the requirements to get decent performance. But annotated images are difficult and expensive to obtain in the agricultural field. Therefore, designing an efficient and effective strategy is one of the challenges in this area with few labeled data. Transfer learning, assuming taking knowledge from a source domain to a target domain, is borrowed to address this issue and observed comparable results. However, current transfer learning strategies can be regarded as a supervised method as it hypothesizes that there are many labeled images in a source domain. In contrast, unsupervised transfer learning, using only images in a source domain, gives more convenience as collecting images is much easier than annotating. In this paper, we leverage unsupervised transfer learning to perform plant disease recognition, by which we achieve a better performance than supervised transfer learning in many cases. Besides, a vision transformer with a bigger model capacity than convolution is utilized to have a better-pretrained feature space. With the vision transformer-based unsupervised transfer learning, we achieve better results than current works in two datasets. Especially, we obtain 97.3% accuracy with only 30 training images for each class in the Plant Village dataset. We hope that our work can encourage the community to pay attention to vision transformer-based unsupervised transfer learning in the agricultural field when with few labeled images.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권2호
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Recognizing Actions from Different Views by Topic Transfer

  • Liu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2093-2108
    • /
    • 2017
  • In this paper, we describe a novel method for recognizing human actions from different views via view knowledge transfer. Our approach is characterized by two aspects: 1) We propose a unsupervised topic transfer model (TTM) to model two view-dependent vocabularies, where the original bag of visual words (BoVW) representation can be transferred into a bag of topics (BoT) representation. The higher-level BoT features, which can be shared across views, can connect action models for different views. 2) Our features make it possible to obtain a discriminative model of action under one view and categorize actions in another view. We tested our approach on the IXMAS data set, and the results are promising, given such a simple approach. In addition, we also demonstrate a supervised topic transfer model (STTM), which can combine transfer feature learning and discriminative classifier learning into one framework.

딥러닝 기반의 도메인 적응 기술: 서베이 (Deep Learning based Domain Adaptation: A Survey)

  • 나재민;황원준
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.511-518
    • /
    • 2022
  • 딥러닝 기반의 지도학습은 다양한 응용 분야에서 비약적인 발전을 이루었다. 그러나 많은 지도 학습 방법들은 학습 및 테스트 데이터가 동일한 분포에서 추출된다는 공통된 가정 하에 이루어진다. 이 제약 조건에서 벗어나는 경우, 학습 도메인에서 훈련된 딥러닝 네트워크는 도메인 간의 분포 차이로 인하여 테스트 도메인에서의 성능이 급격하게 저하될 가능성이 높다. 도메인 적응 기술은 레이블이 풍부한 학습 도메인 (소스 도메인)의 학습된 지식을 기반으로 레이블이 불충분한 테스트 도메인 (타겟 도메인) 에서 성공적인 추론을 할 수 있도록 딥러닝 네트워크를 훈련하는 전이 학습의 한 방법론이다. 특히 비지도 도메인 적응 기술은 타겟 도메인에 레이블이 전혀 없는 이미지 데이터에만 접근할 수 있는 상황을 가정하여 도메인 적응 문제를 다룬다. 본 논문에서는 이러한 비지도 학습 기반의 도메인 적응 기술들에 대해 탐구한다.

Agent with Low-latency Overcoming Technique for Distributed Cluster-based Machine Learning

  • Seo-Yeon, Gu;Seok-Jae, Moon;Byung-Joon, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.157-163
    • /
    • 2023
  • Recently, as businesses and data types become more complex and diverse, efficient data analysis using machine learning is required. However, since communication in the cloud environment is greatly affected by network latency, data analysis is not smooth if information delay occurs. In this paper, SPT (Safe Proper Time) was applied to the cluster-based machine learning data analysis agent proposed in previous studies to solve this delay problem. SPT is a method of remotely and directly accessing memory to a cluster that processes data between layers, effectively improving data transfer speed and ensuring timeliness and reliability of data transfer.

제한된 라벨 데이터 상에서 다중-태스크 반 지도학습을 사용한 동작 인지 모델의 성능 향상 (Improving Human Activity Recognition Model with Limited Labeled Data using Multitask Semi-Supervised Learning)

  • ;;이석룡
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.137-147
    • /
    • 2018
  • 기계 학습을 통한 인간 동작 인지 (human activity recognition) 시스템에서 중요한 요소는 충분한 양의 라벨 데이터 (labeled data)를 확보하는 것이다. 그러나 라벨 데이터를 확보하는 일은 많은 비용과 시간을 필요로 한다. 매우 적은 수의 라벨 데이터를 가지고 있는 새로운 환경 (타겟 도메인)에서 동작 인지 시스템을 구축하는 경우, 기존의 환경 (소스 도메인)의 데이터나 이 환경에서 학습된 분류기(classifier)를 사용하는 것은 도메인이 서로 다르기 때문에 바람직하지 않다. 기존의 기계 학습 방법들이 이러한 문제를 해결할 수 없으므로 전이 학습 (transfer learning) 방법이 제시되었으며, 이 방법에서는 소스 도메인에서 확보한 지식을 활용하여 타겟 도메인에서의 분류기 성능을 높이도록 하고 있다. 본 논문에서는 다중 태스크 신경망 (multitask neural network)을 사용하여 매우 제한된 수의 데이터만으로 정확도가 높은 동작 인지 분류기를 생성하는 전이 학습방법을 제안한다. 이 방법에서는 소스 및 타겟 도메인 분류기의 손실 함수 최소화가 별개의 태스크로 간주된다. 즉, 하나의 신경망을 사용하여 두 태스크의 손실 함수를 동시에 최소화하는 방식으로 지식 전이(knowledge transfer)가 일어나게 된다. 또한, 제안한 방법에서는 모델 학습을 위하여 비지도 방식(unsupervised manner)으로 라벨이 부여되지 않은 데이터를 활용한다. 실험 결과, 제안한 방법은 기존의 방법에 비하여 일관적으로 우수한 성능을 보여주고 있다.

A Low Complexity PTS Technique using Threshold for PAPR Reduction in OFDM Systems

  • Lim, Dai Hwan;Rhee, Byung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2191-2201
    • /
    • 2012
  • Traffic classification seeks to assign packet flows to an appropriate quality of service (QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

자기 정규화를 통한 도메인 불변 특징 학습 (Learning Domain Invariant Representation via Self-Rugularization)

  • 현재국;이찬용;김호성;유현정;고은진
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.382-391
    • /
    • 2021
  • Unsupervised domain adaptation often gives impressive solutions to handle domain shift of data. Most of current approaches assume that unlabeled target data to train is abundant. This assumption is not always true in practices. To tackle this issue, we propose a general solution to solve the domain gap minimization problem without any target data. Our method consists of two regularization steps. The first step is a pixel regularization by arbitrary style transfer. Recently, some methods bring style transfer algorithms to domain adaptation and domain generalization process. They use style transfer algorithms to remove texture bias in source domain data. We also use style transfer algorithms for removing texture bias, but our method depends on neither domain adaptation nor domain generalization paradigm. The second regularization step is a feature regularization by feature alignment. Adding a feature alignment loss term to the model loss, the model learns domain invariant representation more efficiently. We evaluate our regularization methods from several experiments both on small dataset and large dataset. From the experiments, we show that our model can learn domain invariant representation as much as unsupervised domain adaptation methods.

열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구 (Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera)

  • 문성환;김태훈;조규만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF