• Title/Summary/Keyword: Unstructured text data

Search Result 228, Processing Time 0.022 seconds

Unstructured Data Quantification Scheme Based on Text Mining for User Feedback Extraction (사용자 의견 추출을 위한 텍스트 마이닝 기반 비정형 데이터 정량화 방안)

  • Jo, Jung-Heum;Chung, Yong-Taek;Choi, Seong-Wook;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.131-137
    • /
    • 2018
  • People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.

A Method of Predicting Service Time Based on Voice of Customer Data (고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

Construction Bid Data Analysis for Overseas Projects Based on Text Mining - Focusing on Overseas Construction Project's Bidder Inquiry (텍스트 마이닝을 통한 해외건설공사 입찰정보 분석 - 해외건설공사의 입찰자 질의(Bidder Inquiry) 정보를 대상으로 -)

  • Lee, JeeHee;Yi, June-Seong;Son, JeongWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 2016
  • Most data generated in construction projects is unstructured text data. Unstructured data analysis is very needed in order for effective analysis on large amounts of text-based documents, such as contracts, specifications, and RFI. This study analysed previously performed project's bid related documents (bidder inquiry) in overseas construction projects; as a results of the analysis frequent words in documents, association rules among the words, and various document topics were derived. This study suggests effective text analysis approach for massive documents with short time using text mining technique, and this approach is expected to extend the unstructured text data analysis in construction industry.

Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes (다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석)

  • Kim, Namsoo;Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

De-identifying Unstructured Medical Text and Attribute-based Utility Measurement (의료 비정형 텍스트 비식별화 및 속성기반 유용도 측정 기법)

  • Ro, Gun;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.121-137
    • /
    • 2019
  • De-identification is a method by which the remaining information can not be referred to a specific individual by removing the personal information from the data set. As a result, de-identification can lower the exposure risk of personal information that may occur in the process of collecting, processing, storing and distributing information. Although there have been many studies in de-identification algorithms, protection models, and etc., most of them are limited to structured data, and there are relatively few considerations on de-identification of unstructured data. Especially, in the medical field where the unstructured text is frequently used, many people simply remove all personally identifiable information in order to lower the exposure risk of personal information, while admitting the fact that the data utility is lowered accordingly. This study proposes a new method to perform de-identification by applying the k-anonymity protection model targeting unstructured text in the medical field in which de-identification is mandatory because privacy protection issues are more critical in comparison to other fields. Also, the goal of this study is to propose a new utility metric so that people can comprehend de-identified data set utility intuitively. Therefore, if the result of this research is applied to various industrial fields where unstructured text is used, we expect that we can increase the utility of the unstructured text which contains personal information.

A Study on Word Cloud Techniques for Analysis of Unstructured Text Data (비정형 텍스트 테이터 분석을 위한 워드클라우드 기법에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.715-720
    • /
    • 2020
  • In Big data analysis, text data is mostly unstructured and large-capacity, so analysis was difficult because analysis techniques were not established. Therefore, this study was conducted for the possibility of commercialization through verification of usefulness and problems when applying the big data word cloud technique, one of the text data analysis techniques. In this paper, the limitations and problems of this technique are derived through visualization analysis of the "President UN Speech" using the R program word cloud technique. In addition, by proposing an improved model to solve this problem, an efficient method for practical application of the word cloud technique is proposed.

A study on unstructured text mining algorithm through R programming based on data dictionary (Data Dictionary 기반의 R Programming을 통한 비정형 Text Mining Algorithm 연구)

  • Lee, Jong Hwa;Lee, Hyun-Kyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.113-124
    • /
    • 2015
  • Unlike structured data which are gathered and saved in a predefined structure, unstructured text data which are mostly written in natural language have larger applications recently due to the emergence of web 2.0. Text mining is one of the most important big data analysis techniques that extracts meaningful information in the text because it has not only increased in the amount of text data but also human being's emotion is expressed directly. In this study, we used R program, an open source software for statistical analysis, and studied algorithm implementation to conduct analyses (such as Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis). Especially, to focus on our research scope, we used keyword extract method based on a Data Dictionary. By applying in real cases, we could find that R is very useful as a statistical analysis software working on variety of OS and with other languages interface.

A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining (텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구)

  • Kim, Joo Young;Kim, Dong soo
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2016
  • In the era of the Web 2.0, characterized by the openness, sharing and participation, it is easy for internet users to produce and share the data. The amount of the unstructured data which occupies most of the digital world's data has increased exponentially. One of the kinds of the unstructured data called personal online product reviews is necessary for both the company that produces those products and the potential customers who are interested in those products. In order to extract useful information from lots of scattered review data, the process of collecting data, storing, preprocessing, analyzing, and drawing a conclusion is needed. Therefore we introduce the text-mining methodology for applying the natural language process technology to the text format data like product review in order to carry out extracting structured data by using R programming. Also, we introduce the data-mining to derive the purpose-specific customized information from the structured review information drawn by the text-mining.

A Study on the Value Evaluation of the Unstructured Data within Enterprise (기업내 비정형 데이터의 가치 평가 모델에 관한 연구)

  • Jang, Man-Chul;Kim, Jeong-Su;Kim, Jong-Hee;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.367-369
    • /
    • 2014
  • Digital data are mostly comprised of unstructured data such as text file, office file, image file, video file, and drawing file. The recent digital data being generated and used within enterprise are sharply increasing in quantity. Those digital data are becoming significant as digital assets, but the value of digital assets is not properly evaluated. Accordingly, this study will present a model to evaluate the value of unstructured data as digital assets within enterprise and will also present a differentiated management plan for unstructured data as assets.

  • PDF