• 제목/요약/키워드: Unstructured data analysis

검색결과 428건 처리시간 0.026초

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

다이내믹 토픽 모델링의 의미적 시각화 방법론 (Semantic Visualization of Dynamic Topic Modeling)

  • 연진욱;부현경;김남규
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2022
  • 최근 방대한 양의 텍스트 데이터에 대한 분석을 통해 유용한 지식을 창출하는 시도가 꾸준히 증가하고 있으며, 특히 토픽 모델링(Topic Modeling)을 통해 다양한 분야의 여러 이슈를 발견하기 위한 연구가 활발히 이루어지고 있다. 초기의 토픽 모델링은 토픽의 발견 자체에 초점을 두었지만, 점차 시기의 변화에 따른 토픽의 변화를 고찰하는 방향으로 연구의 흐름이 진화하고 있다. 특히 토픽 자체의 내용, 즉 토픽을 구성하는 키워드의 변화를 수용한 다이내믹 토픽 모델링(Dynamic Topic Modeling)에 대한 관심이 높아지고 있지만, 다이내믹 토픽 모델링은 분석 결과의 직관적인 이해가 어렵고 키워드의 변화가 토픽의 의미에 미치는 영향을 나타내지 못한다는 한계를 갖는다. 본 논문에서는 이러한 한계를 극복하기 위해 다이내믹 토픽 모델링과 워드 임베딩(Word Embedding)을 활용하여 토픽의 변화 및 토픽 간 관계를 직관적으로 해석할 수 있는 방안을 제시한다. 구체적으로 본 연구에서는 다이내믹 토픽 모델링 결과로부터 각 시기별 토픽의 상위 키워드와 해당 키워드의 토픽 가중치를 도출하여 정규화하고, 사전 학습된 워드 임베딩 모델을 활용하여 각 토픽 키워드의 벡터를 추출한 후 각 토픽에 대해 키워드 벡터의 가중합을 산출하여 각 토픽의 의미를 벡터로 나타낸다. 또한 이렇게 도출된 각 토픽의 의미 벡터를 2차원 평면에 시각화하여 토픽의 변화 양상 및 토픽 간 관계를 표현하고 해석한다. 제안 방법론의 실무 적용 가능성을 평가하기 위해 DBpia에 2016년부터 2021년까지 공개된 논문 중 '인공지능' 관련 논문 1,847건에 대한 실험을 수행하였으며, 실험 결과 제안 방법론을 통해 다양한 토픽이 시간의 흐름에 따라 변화하는 양상을 직관적으로 파악할 수 있음을 확인하였다.

Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발 (Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.227-252
    • /
    • 2018
  • 인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.

다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론 (Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections)

  • 김무성;김남규
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • 최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.

SNS 사용특성, 대출특성, 개인특성이 신용대출 상환에 미치는 영향에 관한 연구 (A Study on the Impact of SNS Usage Characteristics, Characteristics of Loan Products, and Personal Characteristics on Credit Loan Repayment)

  • 정원훈;이재순
    • 벤처창업연구
    • /
    • 제18권5호
    • /
    • pp.77-90
    • /
    • 2023
  • 본 연구의 목적은 SNS 사용특성과 대출상품의 특성, 개인특성이 신용대출 상환에 미치는 영향력을 확인하여 SNS를 활용하는 대안신용평가가 기존 대출심사를 보완할 수 있는지를 검증하기 위함이다. 이를 위해 SNS를 활용하여 실제 대출심사에 반영하고 있는 T사 A 신용대출 프로그램 데이터를 이용하여 SNS 사용특성, 대출특성, 개인특성이 신용대출 상환에 미치는 영향력을 이항로지스틱 회귀분석을 통해 분석하였다. 분석결과 첫째, 사용자의 성격 및 개별 특성을 나타내는 프로필 사진의 경우 본인을 드러내지 않으려고 프로필 사진을 등록하지 않은 사람들과 달리 외향적인 경향의 사람이 선택할 가능성이 큰 본인 사진, 가족, 친구 등의 사적그룹 사진, 성실성의 경향이 강한 사람이 선택할 확률이 높은 취미 등 사회활동 사진, 개방성과 신경성이 높은 경향의 사람이 많이 선택하는 캐릭터·유머 사진, 개인의 사생활과 직결되는 가족·친구 등 사진을 SNS에 사용하는 사람들일수록 신용대출 상환에 적극적인 것으로 나타났다. 본인을 감추는 풍경 등의 사진 사용과 신용대출 상환과의 인과관계는 통계적으로 유의하지 않은 것으로 나타났다. 또한, SNS 사용량이 많을수록 신용대출 상환가능성이 높아지는 것으로 나타났다. 반면 SNS 소통량은 신용대출 상환가능성에 유의한 영향을 미치지 않는 것으로 나타났는데, 이는 소통량이라는 변수가 사용자가 직접 작성한 글보다는 타인의 댓글에 대한 공감을 나타내는 수동적 측면이 강하기 때문에 나타난 결과라 판단된다. 대출채권이 가진 특성을 나타내는 대출기간과 대출횟수도 신용대출 상환에 통계적으로 유의한 영향을 미치는 것으로 나타났다. 이는 대출기간과 대출횟수가 소액대출 상품에서도 중요한 영향요소로 고려되어야 함을 의미한다. 개인 특성 변수 중에서는 성별만 유의하게 나타났다. 이는 분석에 사용한 대출프로그램이 은행 등의 금융기관에서 대출이 불가능한 저신용 점수를 가진 20~30대 고객이 대부분인 상품으로 이용자의 나이와 신용점수에 있어서 차별성이 크지 않다는 것을 의미한다. 본 연구는 SNS사용량과 프로필 사진 등 기존 신용평가 연구에서 다루지 않은 변수를 사용하여 신용대출 상환과의 영향관계를 실증분석 하였다는 점에서 기존 연구와 차별성을 갖는다. SNS와 같은 주관적 비정형정보를 서민지원 대출심사에 활용한다면, 신용거래가 없어서 신용등급이 낮거나 단기적 유동성 함정에 빠진 차입자 즉 금융이력부족자(Thin filer)들이 신용거래 등의 금융 이력이 축적될 때까지의 신용비용에 대한 불이익을 감소시킬 수 있다는 점에서 의의가 있다.

  • PDF

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.