• Title/Summary/Keyword: Unstructured Meshes

Search Result 151, Processing Time 0.183 seconds

Finite volume method for incompressible flows with unstructured triangular grids (비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석)

  • ;;Kim, Jong-Tae;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Inverse Radiation Analysis of a Two-Dimensional Irregular Geometry Using Unstructured Triangular Meshes (비정렬 삼각 격자를 이용한 2 차원 비직교 형상에서의 역복사 해석)

  • Yi, Kyung-Joo;Baek, Seung-Wook;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • The inverse radiation analysis of a two-dimensional irregular configuration using unstructured triangular meshes is presented. In this study, an enclosure filled with an absorbing, emitting and scattering medium with diffusely emitting and reflecting opaque boundaries is considered. The finite volume method is applied to solve the radiative transfer equation in order to simulate the measured incident radiation values which are used as input data for the inverse analysis. The conjugate gradient method is adopted for the estimation of wall emissivities by minimizing the objective function at each iteration step. To verify the performance of the unstructured grid system, we compare the results with those using a structured grid system for the two-dimensional lopsided shape. The effect of measurement errors on the estimation accuracy is also investigated.

Numerical Study of slot injection into turbulent supersonic flow on adaptive meshes (적응 격자계를 이용한 초음속 난류유동장의 측면제트분사에 대한 수치적연구)

  • Kim J. R.;Kim I. T.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 2001
  • Two-dimensional steady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-stokes equation with two-equation κ-turbulence model. High-order upwind scheme is used on unstructured adaptive meshes. The numerical results are compared with experimental data in terms of surface static pressure distributions, the length of the upstream separation region, and the height of the Mach surface for steady flowfields with a Mach number of 3.71 and a unit Reynolds number of 5.83×10/sup 6//m.

  • PDF

Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method (Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석)

  • Choi Hwan-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

Extension of Topological Improvement Procedures for Triangular Meshes (삼각격자에 대한 위상학적 개선과정의 확장)

  • Maeng, Ju-Seong;Han, Seok-Yeong;Choe, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.853-859
    • /
    • 2001
  • This paper describes the extended topological clean up procedures to improve the quality of unstructured triangular meshes. As a postprocessing step, topological improvement procedures are applied both for elements that are interior to the mesh and for elements connected to the boundary and then Laplacian-like smoothing is used by default. Previous clean up algorithms are limited to eliminate the nodes of degree 3,4,8,9,10 and pairs of nodes of degree 5. In this study, new clean up algorithms which minimize the triple connection structures combined with degree 5 and 7 (ie ; 5-7-5, 7-7-5, 7-5-7 etc) are added. The suggested algorithms are applied to two example meshes to demonstrate the effectiveness of the approach in improving element quality in a finite element mesh.

VISCOUS FLOW CALCULATIONS OF HELICOPTER MAIN ROTOR SYSTEM IN FORWARD FLIGHT (전진 비행하는 헬리콥터 주로터 시스템의 점성 유동 해석)

  • Jung, M.S.;Kwon, O.J.;Kang, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-38
    • /
    • 2009
  • In the present study, viscous flow calculations of helicopter main rotor system in forward flight were made by using an unstructured hybrid mesh solver. Each rotating blade relative to the cartesian frame was simulated independently by adopting unstructured overset mesh technique. For the validation of the present method, calculations for the Caradonna-Tung non-lifting forward flight and the AH-1G main rotor system in forward flight were made. Additional computation was made for the UH-60A rotor in forward flight. Reasonable agreements were obtained between the present results and the experiment.

  • PDF

Unstructured discretisation of a non-local transition model for turbomachinery flows

  • Ferrero, Andrea;Larocca, Francesco;Bernaschek, Verena
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.555-571
    • /
    • 2017
  • The description of transitional flows by means of RANS equations is sometimes based on non-local approaches which require the computation of some boundary layer properties. In this work a non-local Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant regions.

DEVELOPMENT OF A LARGE EDDY SIMULATION METHOD ON UNSTRUCTURED MESHES (비정렬 격자를 이용한 LES 기법 개발)

  • Lee, K.S.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.106-109
    • /
    • 2006
  • A large eddy simulation with explicit filters on unstructured mesh is presented. Two explicit filters are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically eddy viscosity model which depends on the explicitly filtered fields and needs no additional ad hoc wall treatment such as van Driest damping function. As a validation problem, the flows around a sphere at several Reynolds numbers, including laminar and turbulent regimes, are calculated and compared to experimental data and numerical results in the literature.

  • PDF

PRECONDITIONED NAVIER-STOKES COMPUTATION FOR WEAKLY COMPRESSIBLE FLOW ANALYSIS ON UNSTRUCTURED MESH (비정렬격자와 예조건화 기법을 이용한 저압축성 점성유동해석)

  • Son, S.J.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2013
  • Preconditioned compressible Navier-Stokes equations are solved for almost incompressible flows. Unstructured meshes are utilized for spatial discretization of complex flow domain. Effectiveness of the current preconditioning algorithm, with respect to various Reynolds numbers and Mach numbers, is demonstrated by the solution of canonical problems for incompressible flows, e.g. driven cavity flows.