• Title/Summary/Keyword: Unstructured Mesh

Search Result 198, Processing Time 0.029 seconds

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.

Numerical Study of a Droplet Movement for the Ocean $CO_2$ Sequestration ($CO_2$해양처리를 위한 액적 거동 시뮬레이션 기초연구)

  • Jung Rho-Taek;Kang Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • In the situation which Russia's ratification of the Kyoto protocol at February,2004, ANNEX I nations must reduce GHG(Green House Gas) discharge rate from 2008 by 2012 to the reduction level at 1990. We introduce the CO₂ ocean sequestration that is one of promising method for getting the stable CO₂ concentration in the atmosphere. There are four categories : ocean transportation technique, ocean initial dissolution technique, ocean deep current evaluation technique, and ocean biological evaluation technique. In this paper, we carried out the fundamental numerical study on the ocean initial dissolution technique, when the Liquidized CO₂ is emitted at the deep ocean, It is very important to the dissolution rate of movable CO₂ interface because it Is directly impact to the ocean organism. In order to investigate the relation of the interface movement and rate of the dissolution, we develope CR(Computational Fluid Dynamics) code that was constructed by the finite volume method based on the unstructured mesh, and a droplet's boundary surface can move and one direction dissolution from disperse phase into continuous phase adopted as its physics be. This study clarifies hydrodynamic relation between solubility and movement of the droplet through the verification of the Cm code.

  • PDF

Development of a Raster-based Two-dimensional Flood Inundation Model (래스터 기반의 2차원 홍수범람 모형의 개발)

  • Lee, Gi-Ha;Lee, Seung-Soo;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.155-163
    • /
    • 2010
  • The past researches on flood inundation simulation mainly focused on development of numerical models based on unstructured mesh networks to improve model performances. However, despite the accurate simulation results, such models are not suitable for real-time flood inundation forecasting due to a huge computational burden in terms of geographic data processing. In addition, even though various types of vector and raster data are available to be compatible with flood inundation models for post-processes such as flood hazard mapping and flood inundation risk analysis, the unstructured mesh-based models are not effective to fully use such information due to data incommensurability. Therefore, this study aims to develop a raster-based two-dimensional inundation model; it guarantees computational efficiency because of direct application of DEM for flood inundation modeling and also has a good compatibility with various types of raster data, compared to a commercial model such as FLUMEN. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results showed a good agreement with the field-surveyed inundation area and were also very similar with results from the FLUMEN. Moreover, the model provided physically-acceptable velocity vectors with respect to inundating and returning flows due to the difference of water level between channel and lowland.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 이차정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.290-297
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second order scheme.

  • PDF

EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU (고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석)

  • Chang, T.K.;Park, J.S.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

Effect of Geometric Variation on Aerodynamic Characteristics of a Shrouded Tail Rotor (덮개꼬리로부터의 형상변화에 따른 공력 특성에 관한 연구)

  • Lee, H.-D.;Kang, H.-J.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2005
  • In the early stage of helicopter design, an optimal configuration is usually determined after a numerous parametric study about the aerodynamic performance due to geometric variation. In order to improve the aerodynamic performance of a shrouded tail rotor, optimization of the tip clearance gap between blade and shroud, the blade planform shape, and the arrangement of blade spacing is required. In the present study, the aerodynamic performance characteristics of a shrouded tail rotor due to geometric variation was investigated by using an inviscid compressible unstructured mesh flow solver for rotary wings.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

DELTA-FORMULATION OF A SEGREGATED NAVIER-STOKES SOLVER WITH A DUAL-TIME INTEGRATION (이중시간적분법을 이용한 순차적 유동해석 기법)

  • Kim, J.;Tack, N.I.;Kim, S.B.;Kim, M.H.;Lee, W.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.31-35
    • /
    • 2006
  • The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.

  • PDF