• Title/Summary/Keyword: Unstructured Grid)

Search Result 225, Processing Time 0.024 seconds

Morphological Transformation of Shock Waves Behind a Flat Plate

  • Chang, Se-Nyong;Lee, Soogab;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2001
  • The interaction of a travelling shock with the shear layer of a flat plate is studied computationally. The Euler and Navier-Stokes equations are solved numerically on quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central axis of a shock tube. The shear layer is first created by two shock waves at different speeds splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer. The shock wave reflected at the end wall impinges the shear layer. The complicated shock dynamics in the evolution to the pseudo-steady state is represented with the morphological transformation of a planar shock into an oblique shock.

  • PDF

Numerical Analysis of Kerosene Burner (석유팬히터 기화기내 유동장 해석)

  • Hong, Yong-Ju;Sim, Seong-Hun;Kim, In-Gyu;Kim, Yeong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.109-118
    • /
    • 1997
  • Kerosene Burner has widely used in domestic heating appliance. Higher combustion efficiency is required to save fuel and clean exhaust gas. The combustion characteristics in kerosene burner highly depends on the performance of evaporating liquid kerosene. And performance of evaporating effect on generation of tar. In this study, flow and heat transfer of kerosene burner is simulated by FLUENT/UNS using unstructured mesh system and discrete phase model to analyze performance of evaporating kerosene liquid. The simulated results show very complicated flow pattern and back flow at the exit of burner.

  • PDF

Newton-Krylov Method for Compressible Euler Equations on Unstructured Grids

  • Kim Sungho;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.153-159
    • /
    • 1998
  • The Newton-Krylov method on the unstructured grid flow solver using the cell-centered spatial discretization oi compressible Euler equations is presented. This flow solver uses the reconstructed primitive variables to get the higher order solutions. To get the quadratic convergence of Newton method with this solver, the careful linearization of face flux is performed with the reconstructed flow variables. The GMRES method is used to solve large sparse matrix and to improve the performance ILU preconditioner is adopted and vectorized with level scheduling algorithm. To get the quadratic convergence with the higher order schemes and to reduce the memory storage. the matrix-free implementation and Barth's matrix-vector method are implemented and compared with the traditional matrix-vector method. The convergence and computing times are compared with each other.

  • PDF

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.

Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulations Using 3-D Unstructured Mesh

  • Wu J.S.;Lian Y.Y.;Cheng G.;Chen Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a recently proposed parallel hybrid particle-continuum (DSMC-NS) scheme employing 3D unstructured grid for solving steady-state gas flows involving continuum and rarefied regions is described [1]. Substitution of a density-based NS solver to a pressure-based one that greatly enhances the capability of the proposed hybrid scheme and several practical experiences of implementation learned from the development and verifications are highlighted. At the end, we present some simulation results of a realistic RCS nozzle plume, which is considered very challenging using either a continuum or particle solver alone, to demonstrate the capability of the proposed hybrid DSMC-NS method.

  • PDF

A Numerical Simulation for Contractive and Dilative Periodic Motion on Axisymmetric Body

  • Kim, Moon-Chan
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Numerical simulation for the axisymmetric body with contractive and dilative periodic motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by the contractive and dilative motion of axisymmetric body. An axisymmetric code is developed with unstructured grid system for the simulation of complicated motion and geometry. It is validated by comparing with the results of Stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n$ = 1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamics performance according to variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

STUDY ON AUTOMATIC 3D WING SHAPE MODELING AND GRID GENERATION (3차원 날개 모델링 및 격자 생성 자동화에 대한 연구)

  • Ryu, G.Y.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.125-129
    • /
    • 2009
  • In this paper automatic 3D wing shape modeling program is introduced. The program is developed in Visual Basic based on Net Framework 3.5 environment by using CATIA COM Library, and it is used together with CATIA system to model 3D wings with or without flaps. With this program users can easily construct wing models by specifying geometry parameters which are usually design variables with the aid of easy-to-use GUI environment, and specifying sectional airfoil data is done either by using analytic shape functions such as NACA series airfoils or by providing input files with point data describing the airfoil shape. When all the input parameters are provided, users can either work further with the model in the CATIA system which would be automatically started by the program or save the resultant model in the format of users choice. Unstructured grid generation program is also briefly described which can make grid generation task for a 3D wing easy and efficient one when used together with the wing modeling program by choosing STL format as the model's output format.

  • PDF

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 이차정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.290-297
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second order scheme.

  • PDF

Large Scale Stabilized Finite Element Simulation and Modeling for Environmental Flows in Urban Area

  • Kashiyama Kazuo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.21-26
    • /
    • 2006
  • A large-scale finite element simulation and modeling method is presented for environmental flows in urban area. Parallel stabilized finite element method based on domain decomposition method is employed for the numerical simulation. Several GIS and CAD data are used for the preparation of the shape model for landform and urban structures. The present method Is applied to the simulation of flood flow and wind flow In urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments in urban area.

  • PDF