• Title/Summary/Keyword: UnsteadyFlow

Search Result 1,862, Processing Time 0.022 seconds

Estimation Technique of Computationally Variable Distance Step in 1-D Numerical Model (1차원 수치모형의 가변 계산거리간격 추정 기법)

  • Kim, Keuk-Soo;Kim, Ji-Sung;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.363-376
    • /
    • 2011
  • 1-D hydrodynamic numerical models have been most widely used in the field of flood analysis. The model's input data are upstream/downstream boundaries, roughness coefficients, cross-sections, and so on, and computational distance step and time step are the most important factors in order to guarantee the computational accuracy, stability, and efficiency. In this study, a theoretical explanation is presented for the basis of the previous empirical selection criteria of cross-section's location; also, the estimation technique of computationally variable distance step is proposed to reflect the properties of flow at every computational time step. Combining this technique with 1-D unsteady numerical model, it was applied to two events of Teton dam failure flood and the Han River flood. The numerical experimental results demonstrate that the accuracy and stability is increased when used more interpolated cross-sections and show that the proposed technique of computationally variable distance step has the same order of accuracy with smaller numbers of cross-section than previous empirical selection criteria. The practical use of this technique will be possible to analyze the river floods with high efficiency as well as accuracy and stability.

Performance Factors for Delaying Slope Failure through Hydraulic Experiments of Dam Overtopping (댐 월류 수리실험을 통한 사면붕괴지연 성능인자 도출)

  • Sung Woo, Lee;Dong Hyun Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Most reservoirs in South Korea are earthen dams, mainly because they are cost-effective and easy to construct. However, earthen dams are highly vulnerable to seepage and overtopping, making them prone to sudden failure during excessive flooding. Such sudden failures can lead to a rapid increase in flood discharge, causing significant damage to downstream rivers and inhabited areas. This study investigates the effect of riprap placement on the slopes of earthen dams in delaying dam failure. Delaying the failure time is crucial as it allows more time for evacuation, significantly reducing potential casualties, which is essential from a disaster response perspective. Hydraulic experiments were conducted in a straight channel, using two different sizes of riprap for protection. Unlike previous studies, these experiments were performed under unsteady flow conditions to reflect the impact of rising water levels inside the dam. The target dam for the study was a cofferdam installed in a diversion tunnel. Experimental results indicated that the presence of riprap protection effectively prevented slope failure under the tested conditions. Without riprap protection, increasing the size of the riprap delayed the failure time. This delay can reduce peak discharge, mitigating damage downstream of the dam. Furthermore, these findings can serve as critical reference material for establishing emergency action plans (EAP) for reservoir failure.