• Title/Summary/Keyword: Unsteady pressure

Search Result 783, Processing Time 0.028 seconds

A Combustion Instability Analysis of a Gas Turbine Combustor Having Closed Acoustic Boundaries at Both Ends (폐음향 경계조건을 갖는 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a gas turbine combustion system, which shows the validity and effectiveness of the approach.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

Flow Field Change before Onset of Flow Separation

  • Hasegawa, Hiroaki;Sugawara, Takeru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.215-222
    • /
    • 2009
  • Jets issuing through small holes in a wall into a freestream has proven effective in the control of flow separation. This technique is known as the vortex generator jet (VGJs) method. If a precursor signal of separation is found, the separation control system using VGJs can be operated just before the onset of separation and the flow field with no separation is always attained. In this study, we measured the flow field and the wall static pressure in a two-dimensional diffuser to find a precursor signal of flow separation. The streamwise velocity measurements were carried out in the separated shear layer and spectral analysis was applied to the velocity fluctuations at some angles with respect to the diffuser. The pattern of peaks in the spectral analysis changes as the divergence angle increases over the angle of which the whole separation occurs. This change in the spectral pattern is related to the enhancement of the growth of shear layer vortices and appears just before the onset of separation. Therefore, the growth of shear layer vortices can be regarded as a precursor signal to flow separation.

PERFORMANCE IMPROVEMENT OF A RANGE HOOD SIROCCO FAN BY CFD FLOW ANALYSIS (렌지후드의 성능개선을 위한 시로코 팬 주위의 유동해석)

  • Han, B.Y.;Park, J.W.;Lee, M.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.159-165
    • /
    • 2008
  • A sirocco fan is widely used for discharging pollutants of a kitchen space since it is able to generate a relatively high air flow rate considering its small size and makes less noise than a axial fan or a centrifugal fan. However, it has a problem because its efficiency is low, and power consumption is larger. Performance of a sirocco fan is influenced by various factors such as number of the fan blades, diameter of the fan, geometry of the fan, geometry of its housing, revolution frequency, static pressure condition, and etc. This research investigated the effect on the performance of geometry of the housing. For CFD analysis, we used a commercial code, SC/Tetra, and used a sliding mesh method to give the same condition as an actual state. Verification of the CFD results is done by comparison of experimental data and numerical one about the suction flow rate, and it is confirmed that two results are well consistent. After we changed the shape of housing according to Archimedes' screw, we observed that suction efficiency is improved by 10.7% maximum.

  • PDF

Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 특성 해석)

  • Lee Ki-Choon;Kim Chang Jun;Hur Nahmkeon;Jeon Wan Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.631-634
    • /
    • 2002
  • The study of the flow characteristics in two types of turbo-fans for a vacuum cleaner was performed in a previous study. In present study an analysis of a new modified model to reduce fan noise was performed by using CFD. The characteristics of three models calculated for various rotating speeds and flow rates are obtained and compared with available measured data. The results show that the modified model gives stable flow characteristics in operating range than the original model, while both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and thus the peak pressure at BPF can be relieved, it is anticipated that the modified model gives much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements.

  • PDF

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

Response of Radiation Driven Transient Burning of AP and HMX Using Flame Modeling

  • Lee, Changjin;Lee, Jae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1181-1187
    • /
    • 2001
  • The radiation driven response function (R$\_$q/) for AP and HMX propellant was obtained and compared with experimental results by using a simple $\alpha$$\beta$γ flame model rather than with detailed chemistry. For an AP propellant, the profile of heat release was assumed by the experimental data. The calculated R$\_$q/ shows a frequency shift of the peak amplitude to the higher frequency and a decrease in the maximum amplitude as radiation increases. In addition, it was found the increase in the total flux could enhance the mean burning rate γ$\_$b/ while the phase differences between the radiation and resulting conduction could consequently reduce the fluctuating amplitude Δγ$\_$b/. Fortunately, this is the qualitative duplication of the behavior recently observed in the experiments of RDX propellants. For HMX, the response function R$\_$q/ has been calculated and showed a quite good agreement with the experimental data. Even though the fairly good agreement of R$\_$q/ with experimental ones, the unsteady behavior of HMX was not reproduced as the radiation input increased. This is due to lack of the material properties of HMX or the physical understanding of HMX burning at high pressure.

  • PDF

A Study for Predictions of In-Cylinder Residual Gas Fraction in SI Engines (SI 엔진 내부의 잔류가스 추정 기법에 관한 연구)

  • Kim, Sung-Cheol;Lee, Sang-Jin;Kim, Duk-Sang;Ohm, In-Yong;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.903-908
    • /
    • 2001
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was formulated. The effects of engine operating parameters on the residual gas were also investigated. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual fraction was derived by comparing the total charging and fresh air. This results coincide with measured value very well.

  • PDF

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.