• Title/Summary/Keyword: Unsteady flow model

Search Result 692, Processing Time 0.028 seconds

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Analysis of Hydraulic Characteristics Using SMS RMA2 and SED2D Model in the Downstream of Gyeongan-Cheon (SMS를 이용한 경안천 하류구간의 하천흐름 분석)

  • Hong, Seong-Min;Jung, In-Kyun;Lee, Joon-Woo;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.94-104
    • /
    • 2004
  • The purpose of this study is to analyze various hydraulic characteristics using SMS (Surface Water Modeling System) RMA2 model. It is based on 2-D finite element method. River reaches (13.8km) from Gyeongan gauge station to the inlet of Paldang lake was selected. Finite element was made by RIMGIS Data, and the analysis of river-changes was operated by unsteady flow. The sediment concentration and bed change was simulated using SED2D model. This River's velocity was distributed that 0.05~3.85m/s and bed change was changed about 0.0003~0.0135m.

  • PDF

Numerical Study on Transfer Port Design for Scavenging Performance in Small Two-stroke Engines (소형 2행정 엔진의 전송 포트 형상에 따른 소기 성능에 대한 수치 해석적 연구)

  • Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.28-44
    • /
    • 2020
  • In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Finite Element A nalysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel:I.Theory and Stability Analysis (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 :I.이론 및 수치안정성 해석)

  • Han, Kun-Yeun;Park, Jae-Hong;Lee, Jong-Tae
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.167-178
    • /
    • 1996
  • The simulation techniques of hydrologic data series have been developed for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etx. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in western USA since the early of 1980's. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and first order autoregressive model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

Numerical investigation on VIV suppression of marine riser with triangle groove strips attached on its surface

  • Wang, Wei;Song, Baowei;Mao, Zhaoyong;Tian, Wenlong;Zhang, Tingying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.875-882
    • /
    • 2019
  • The effects of Triangle Groove Strips (TGS) on Vortex-induced Vibration (VIV) suppression of marine riser are numerically investigated using Computational Fluid Dynamics (CFD) method. The range of Reynolds number in simulations is 4.0 × 104 < Re < 1.2 × 105. The two-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) equations and Shear Stress Transport (SST) k-ω turbulence model are used to calculate the flow around marine riser. The Newmark-β method is employed for evaluating the structure dynamics of marine riser. The effect of the height ratio (ε) of TGS on VIV suppression is evaluated. The amplitude responses, frequency responses, vortex patterns and the flow around the structures are discussed in detail. With the increase of the height ratio of TGS, the suppression effect of TGS on VIV suppression is improved firstly and then weakened. When ε=0.04, the suppression effect of TGS is the best. Compared with the VIV responses of smooth marine riser, the amplitude ratio is reduced by 38.9%, the peak of the lift coefficient is reduced by 69% and the peak of the drag coefficient is reduced by 40% when Re=6.0 × 104. With the increase of Reynolds number, the suppression effect of TGS on VIV suppression is improved firstly and then weakened. When the Reynolds number is 7.0 × 104, the amplitude ratio can be reduced by 40.1%. As to the large-amplitude vibration cases, the TGS show nice suppression effect on VIV.

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.