• Title/Summary/Keyword: Unsteady energy analysis

Search Result 117, Processing Time 0.029 seconds

A Twin Impulse Turbine for Wave Energy Conversion -The Performance under Unsteady Airflow-

  • Alam, M M Ashraful;Sato, Hideki;Takao, Manabu;Okuhara, Shinya;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • A twin unidirectional impulse turbine for wave energy conversion has been suggested in our previous study, and the performance under unsteady flow has been investigated by quasi-steady analysis. In the present study, the performance of twin impulse turbine under unsteady flow condition has been investigated by unsteady analysis of Computational fluid dynamics. As a result, the mean efficiency of twin unidirectional impulse turbine under unsteady flow is lower than the maximum efficiency of unidirectional impulse turbine. Moreover, it is verified that airflow goes backward in the reverse turbine in low flow rates.

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System (연료전지용 연료승압 블로어 내부유동장 평가)

  • Choi, Ka-Ram;Jang, Choon-Man
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

Internal Oscillating Flow Field Analysis in Air Chamber of Wave Energy Conversion (파력발전장치 공기실 내 왕복유동장 해석)

  • Moon, Jae-Seung;Hyun, Beom-Soo;Hong, Key-Yong;Shin, Seung-Ho;Kim, Gil-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.427-430
    • /
    • 2006
  • This paper deals with the internal oscillating flaw in air chamber and duct of an OWC-type wave energy converter by numerical analysis using commercial CFD code, FLUENT. Whole oscillating flaw from OWC-type chamber to outlet through duct was solved by unsteady analysis in order that performance of wave energy conversion was made better. Results show that whole oscillating flaw field of this system in unsteady condition. Duct shape at setting place of turbine is curved with elbow, because profile of inlet condition to turbine is important in its efficiency. This paper is found internal flaw in air chamber and duct. Also, this research was found effect of duct shape.

  • PDF

Simulation and Experimental Study for Energy Flow Dynamics of Floor Radiant Heating System (바닥복사 난방시스템의 에너지 유동특성에 관한 시뮬레이션 및 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.927-932
    • /
    • 2006
  • A simulation and experimental study for energy flow dynamics of floor radiant heating system were performed. The study was done under both environmental chamber and a house with several rooms. The unsteady energy analysis method using equivalent R-C circuit and radiation heat transfer analysis of enclosure analysis method with simple structured rooms were used for computer simulation. Also, first order dynamics with time delay in analyzing the return water was considered. The results of temperature changes of the simulation study are good fit with the ones of experimental one.

  • PDF

Short term unsteady wind loading on a low-rise building

  • Sterling, M.;Baker, C.J.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.403-418
    • /
    • 2003
  • This paper presents an extensive analysis of the short term, unsteady wind loading on a low-rise building. The building is located in a rural environment and only the specific situation of wind flow orthogonal to the long face of the structure is considered. The data is analysed using conventional analysis and less traditional methods such as conditional sampling and wavelet analysis. The nature of the flow field over the building is found to be highly unsteady and complex. Fluctuating pressures on the windward wall are shown to a large extent to be caused by the fluctuations in the upstream flow, whereas extreme pressures on the roof are as a result of high intensity small scale flow structures. On the roof of the building a significant amount of energy is shown to exist at frequencies above 1 Hz.

Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride (불산의 비정상 확산거동 예측을 위한 대와동모사)

  • Ko, M.W.;Oh, Chang Bo;Han, Y.S.;Choi, B.I.;Do, K.H.;Kim, M.B.;Kim, T.H.
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • A Large Eddy Simulation(LES) was performed for the prediction of unsteady dispersion behavior of hydrogen fluoride (HF). The HF leakage accident occurred at the Gumi fourth industrial complex was numerically investigated using the Fire Dynamics Simulator (FDS) based on the LES. The accident area was modeled three-dimensionally and time-varying boundary conditions for wind were adopted in the simulation for considering the realistic accident conditions. The Message Passing Interface (MPI) parallel computation technique was used to reduce the computational time. As a result, it was found that the present LES simulation could predict the unsteady dispersion features of HF near the accident area effectively. The dispersion behaviors of the leaked HF was much affected by the unsteady wind direction. The LES could predict the time variation of the HF concentration reasonably and give an useful information for the risk analysis while the prediction with the time-averaging concept of HF concentration had a limitation for the amount of HF concentration at specific location point. It was identified that the LES is very useful to predict the dispersion characteristics of hazardous chemicals.

New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis (풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구)

  • Shin Hyungki;Park Jiwoong;Kim Hogeon;Lee Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

Analysis of Steady and Unsteady State Behavior in Behavior Water Distillation Process (중수증류공정의 정상 및 비정상상태 거동해석)

  • Kim, Kwang-Rag;Chung, Hong-Suck;Sung, Ki-Woung;Kim, Yong-Eak;Lee, Kun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 1986
  • The steady and unsteady state models were established for the performance analysis and design of heavy water distillation columns packed with corrugated wire mesh. After the steady state model was derived with pressure drops, separated D$_2$O concentration and temperature profiles and pressure gradients in the column were obtained by solving MESH equations with equation tearing method. For the analysis of unsteady state behavior, the equilibrium stage transient model deduced from modifying the Cohen's ideal cascade equation was used to predict the concentration change of heavy water with time. These models were in good agreement with the experimental results of heavy water distillation at total reflux. And the newly developed packing material turned out to be very efficient separation device for very small HETP, pressure drop and holdup.

  • PDF

Unsteady flow around a two-imensional section of a vertical axis turbine for tidal stream energy conversion

  • Jung, Hyun-ju;Lee, Ju-Hyun;Rhee, Shin-Hyung;Song, Mu-Seok;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.64-69
    • /
    • 2009
  • The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 aiifoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.