• 제목/요약/키워드: Unsteady calculation

검색결과 209건 처리시간 0.025초

CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측 (CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre)

  • 김성태;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

배기계 형상에 따른 비정상 유동에서의 배기매니폴드와 촉매 입구 유동현상 해석 (Study on the Exhaust Flow Analysis of Unsteady Flow with Various Exhaust Manifolds and Catalyst Geometries)

  • 이재호;김대우;곽호철;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.217-222
    • /
    • 2004
  • In recent year, as the current and future emission regulations go stringent, the research of exhaust manifold and CCC has become the subject of increasing interest and attention. This study is concerned with the systematic approach to improve catalyst flow uniformity and light-off behavior through the basic understanding of exhaust flow characteristics. Computational approach to the unsteady compressible flow for exhaust manifold of 4-1 type and 4-2-1 type and CCC system of a 4-cylinder DOHC gasoline engine was performed to investigate the flow distribution of exhaust gases. In this study, through calculation, the effects of geometric configuration of exhaust manifold on flow structure and its maldistribution in monolith were mainly investigated to understand the exhaust flow patterns in terms of flow uniformity. Based on the design guidance resulting from this fundamental study, the flow uniformity of 4-2-1 type exhaust manifold demonstrated the more improved exhaust characteristics than that of the 4-1 type one.

  • PDF

제철소용 가열로 내전열과 유동장의 3차원 비정상 해석 (3D Unsteady Numerical Analysis of a Slab Heater for Steel Mill Company)

  • 한상헌;강상훈;김창영;김만영;백승욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.67-74
    • /
    • 2004
  • Numerical analysis code has been developed for investigating the combustion characteristics in a slab heater of a steel mill company. Unsteady full 3-Dimensional behaviour can be predicted with the code. Premixed flame model is adopted for combustion phenomena. And eddy dissipation model is used for turbulent flow and non gray FVM method for radiation. Slab movement can be fully traced from entrance into heater until it's exit and computation is performed during that period. Code was validated by comparing the calculation results with experimental ones for the bench scale heater.

  • PDF

원형 실린더 주위의 비정상 이차원 층류유동 수치해석 (Unsteady 2-D Laminar Flow Simulation past a Circular Cylinder)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.41-47
    • /
    • 2004
  • The paper presents numerical simulations of laminar vortex-shedding flows past a circular cylinder for Re ≤ 500. The simulations are performed by solving the unsteady 2-D Navier-Stokes equations with a finite volume method using unstructured grid system. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with experiments and with previous numerical results, showing good agreement. It is found that, for the truly laminar Reynolds number range the present calculation method described is capable of producing reasonably accurate results for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

스마트무인기 파워 전기체 비정상 유동해석 (UNSTEADY FLOW SIMULATION FOR POWERED TILTROTOR UAV)

  • 최성욱;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.8-13
    • /
    • 2007
  • Unsteady flow simulation for the tiltrotor Smart UAV configuration was performed to investigate the powered rotor wake effect on aerodynamic characteristics. Calculations were performed to simulate various flow conditions based on different flight modes including hover, conversion and cruise. Three-dimensional compressible Navier-Stokes equation code were used for flow calculation and Chimera grid technique overlapping individually generated grids was employed. A dynamic grid method was adopted in simulation of the rotating blades. Flow calculations were also conducted for the un-powered case. Aerodynamic interaction between the rotor and airframe was investigated comparing three data sets from the un-powered, powered, and isolated rotor cases.

  • PDF

초음속 충돌 제트에 대한 비정상 유동 해석 (Unsteady Flow Analysis of Supersonic Impinging Jet)

  • 김성인;박승오;홍승규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.23-28
    • /
    • 2002
  • TNumerical simulations of the supersonic impinging jet flows are carried out using the 3D Navier-Stokes code. This paper is focuses on the unsteady flow features associated with stagnation bubbles and other oscillatory behavior. The 3D code was validated by reproducing the results of Lamont's experiments. Computation is carried out for the cases in which the unsteadiness of the plate shock has been observed experimentally. The computational results confirm the oscillatory feature in several kHz. Unsteady calculation with algebraic turbulence model is also performed. It is found that the laminar and turbulent results have some discrepancy in the transient period. However, both of them reveal the oscillatory behavior with similar frequency.

  • PDF

비정상열유속 기법을 이용한 표면 열유속 해석에 관한 연구 (A Study on the Analysis of Surface Heat Flux Using the Transient Heat Flux Method)

  • 이종주
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.503-510
    • /
    • 2010
  • The quick variation of the canister wall temperature causes the modification of the shape of canister wall. This paper is the possibility of adoption and the error analysis about the transient heat flux method. The commercial code(Fluent Ver6.2.16) was employed for the calculation of surface temperature in the case of steady and unsteady heat flux condition. Based the surface temperature variation and surface material property, transient heat flux method can calculate the surface heat flux. In the case of steady heat flux condition, the error is about 2%, and in the case of unsteady heat flux condition, the error is about 3.6%. With the unsteady heat flux condition, the time which reach the maximum surface heat flux is almost same between the numerical analysis and transient heat flux method.

Analytical Solutions of Unsteady Reaction-Diffusion Equation with Time-Dependent Boundary Conditions for Porous Particles

  • Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.652-665
    • /
    • 2019
  • Analytical solutions of the reactant concentration inside porous spherical catalytic particles were obtained from unsteady reaction-diffusion equation by applying eigenfunction expansion method. Various surface concentrations as exponentially decaying or oscillating function were considered as boundary conditions to solve the unsteady partial differential equation as a function of radial distance and time. Dirac delta function was also used for the instantaneous injection of the reactant as the surface boundary condition to calculate average reactant concentration inside the particles as a function of time by Laplace transform. Besides spherical morphology, other geometries of particles, such as cylinder or slab, were considered to obtain the solution of the reaction-diffusion equation, and the results were compared with the solution in spherical coordinate. The concentration inside the particles based on calculation was compared with the bulk concentration of the reactant molecules measured by photocatalytic decomposition as a function of time.

단순 가스터빈 사이클 과도 성능해석 (Unsteady Performance Analysis of a Simple Shaft Gas Turbine Cycle)

  • 김수용
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.5-13
    • /
    • 2000
  • The computation scheme of simulating gas turbine transient behavior was developed. The basic principles of this scheme and main input data required are described. Calculation results are presented in terms of whole operating regime of the cycle. The influence of main initial parameters such as starting engine power, moment of inertia of the rotor, fuel supplying schedule etc. on performance characteristics of has turbine during transient operation is studied In addition, bleeding air influence on transient behavior was also considered For validation of the developed code, comparison of present calculation with that of measurement data of the experimental data for the range of operating period studied.

  • PDF

수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용 (An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation)

  • 전완호;이덕주
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF