• Title/Summary/Keyword: Unsteady aerodynamics

Search Result 111, Processing Time 0.03 seconds

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

A High-efficiency Trim Method for CFD Numerical Calculation of Helicopter Rotors

  • Ye, Zhou;Xu, Guo-hua;Shi, Yong-jie;Xia, Run-ze
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.186-196
    • /
    • 2017
  • In order to resolve the trimming difficulty in rotor CFD calculations, a high-efficiency and improved "delta trim method" is established to compute the blade control settings that are necessary to identify the blade motion. In this method, a simplified model which combines the blade element theory and different inflow models is employed to calculate the control settings according to the target aerodynamic forces, then it is coupled into a CFD solver with unsteady Navier-Stokes equations by the delta methodology, which makes the control settings and aerodynamics calculated and updated in the meantime at every trim cycle. Different from the previous work, the current research combines the inflow model based on prescribed wake theory. Using the method established, the control settings and aerodynamic characteristics of Helishape 7A, AH-1G and Caradonna-Tung rotors are calculated. The influence of different inflow models on trimming calculations is analyzed and the computational efficiency of the current "delta trim method" is compared with that of the "CFD-based trim method". Furthermore, for the sake of improving the calculation efficiency, a novel acceleration factor method is introduced to accelerate the trimming process. From the numerical cases, it is demonstrated that the current "delta trim method" has higher computational efficiency than "CFD-based trim method" in both hover and forward flight, and up to 70% of the amount of calculation can be saved by current "delta trim method" which turns out to be satisfactory for engineering applications. In addition, the proposed acceleration factor shows a good ability to accelerate the trim procedure, and the prescribed wake inflow model is always of better stability than other simple inflow models whether the acceleration factor is utilized in trimming calculations.

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

Flutter Analysis of 2D Airfoil with Gurney Type Flap (Gurney 플랩이 장착된 2차원 익형의 플러터 해석)

  • Bae, Eui-Sung;Joo, Wan-Don;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Flutter analysis of NACA 0012 with Gurney flap was conducted in time domain. Flutter analysis was performed with a conjunction of two governing equations; one is 2D Navier-Stokes equation and, the other is Lagrange equation of two dimensional plunge & pitch model. Both governing equations were coupled by loose-coupling method. From the computed results, the effect of Gurney flap was concluded to move the flutter boundary of NACA 0012 downward, which means flutter occurs at lower speed than that of NACA 0012. Although flutter boundary of gurney flap was above the safety margin when mach number was lower than 0.85, there might be a possibility of crossing the safety margin when mach number was between 0.85 and 0.9. For safety, the effect of gurney flap needs to be investigated carefully before using it.

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

Validation of a Robust Flutter Prediction by Optimization

  • Chung, Chan-Hoon;Shin, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.43-57
    • /
    • 2012
  • In a modern aircraft, there are many variations in its mass, stiffness, and aerodynamic characteristics. Recently, an analytical approach was proposed, and this approach uses the idea of uncertainty to find out the most critical flight flutter boundary due to the variations in such aerodynamic characteristics. An analytical method that has been suggested to predict robust stability is the mu method. We previously analyzed the robust flutter boundary by using the mu method, and in that study, aerodynamic variations in the Mach number, atmospheric density, and flight speed were taken into consideration. The authors' previous attempt and the results are currently quoted as varying Mach number mu analysis. In the author's previous method, when the initial flight conditions were located far from the nominal flutter boundary, conservative predictions were obtained. However, relationships among those aerodynamic parameters were not applied. Thus, the varying Mach number mu analysis results required validation. Using an optimization approach, the varying Mach number mu analysis was found out to be capable of capturing a reasonable robust flutter boundary, i.e., with a low percentage difference from boundaries that were obtained by optimization. Regarding the optimization approach, a discrete nominal flutter boundary is to be obtained in advance, and based on that boundary, an interpolated function was established. Thus, the optimization approach required more computational effort for a larger number of uncertainty variables. And, this produced results similar to those from the mu method which had lower computational complexity. Thus, during the estimation of robust aeroelastic stability, the mu method was regarded as more efficient than the optimization method was. The mu method predicts reasonable results when an initial condition is located near the nominal flutter boundary, but it does not consider the relationships that are among the aerodynamic parameters, and its predictions are not very accurate when the initial condition is located far from the nominal flutter boundary. In order to provide predictions that are more accurate, the relationships among the uncertainties should also be included in the mu method.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.