• Title/Summary/Keyword: Unsteady Wakes

Search Result 26, Processing Time 0.027 seconds

Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes (비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석)

  • Lee, Eun-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

Numerical Simulations of Unsteady Wakes Using a Discrete Vortex Method (이산와류법을 이용한 비정상 후류의 수치적 모사)

  • Han, Cheol-Hui;Choe, Geun-Hyeong;Jo, Jin-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.397-404
    • /
    • 2001
  • The behavior of unsteady wake vortices for the two-dimensional flat plate is simulated by a discrete vortex method. The flat plates and their wakes are represented by vortex sheets. The vortex sheets are replaced with discrete vortices. The freely deforming wake sheets are computed as a part of solution and the ground effect is included by a image method. In order to predict wake shapes accurately and to model closely coupled aerodynamic interference, a vortex core model and a vortex core addition scheme are used. The simulated wake shapes convecting behind the plates in unsteady motion are compared to a flow visualization result and other numerical results. The present results agree well with them. The present method is also applied to the aerodynamic analysis of flat plates in tandem configuration in ground effect.

Study of the Effects of Wakes on Cascade Flow (후류가 익렬유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.309-314
    • /
    • 1999
  • This paper is concerned with the viscous interaction between rotor and stator The viscous interaction is caused by wakes from upstream blades. The cascade was composed with five blades and cylinders were placed to make wakes and their location was about 50 percent of blade chord upstream. The location of cylinders were varied in the cascade axis with 0, 20, 40, 60 and 80 percent of pitch length. The velocity distribution in the cascade passage were measured using single slanted hot-wire and the ones in the boundary layer using boundary probe. As a result, wakes decay more rapidly at suction surface and more slowly at pressure surface. And the measurement of momentum thickness of cascade shows that the momentum thickness is larger near the blade surface. From measurement of blade boundary layer, turbulent intensity is also larger near the blade surface because wakes collide the boundary layer And wakes make boundary layer thickness smaller and delay flow separation.

  • PDF

Effects of Rotor-Stator Blade Count Ratio on the Unsteady Aerodynamic Characteristics of a Cascade (동익과 정익의 블레이드 개수 비가 익렬의 비정상 공기역학적 특성에 미치는 영향에 대한 수치해석적 연구)

  • Kang D. J.;Jeon H. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

The Unsteady Aerodynamic Characteristics of a Cascade subjected to a upstream wake with different pitch (다른 크기의 피치를 가진 후류장에 놓인 익렬의 비정상 공기역학적 특성에 관한 수치해석적 연구)

  • Jeon, H.J.;Kang, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.610-615
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

Study on Unsteady Pressure due to Fan Rotor-Stator Interaction

  • Goto, S.;Kodama, H.;Tsuchiya, N.;Nakamura, Y.;Nozaki, O.;Nishizawa, T.;Yamamoto, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.472-478
    • /
    • 2004
  • This paper describes the characteristics of the unsteady pressure on the stator surface induced by rotor viscous wakes. The primary object of this study is to investigate the effects of axial spacing between the rotor and the stator and three-dimensional vane geometries such as stator sweep and stator lean on the unsteady pressure fluctuations on the stator vane. To predict these fluctuations, unsteady three-dimensional Navier-Stokes analyses are performed. Furthermore, a three-dimensional analytical method using unsteady lifting-surface theory is also used to elucidate the mechanism of interaction of passing rotor wakes with downstream stator. Five different fan configurations with three sets of stator geometries, which are three radial stator configurations with different axial spacing, the swept stator and the swept and leaned stator, are used for this study. It is found that, in axial spacing between rotor and stator, the effect of radial phase skew of incoming rotor wake is important for the reduction of the induced unsteady pressure in addition to the rotor wake decay. It is also shown that incorporation of stator sweep and lean is effective to reduce this unsteady pressure.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

Numerical Analysis Unsteady Flow Characteristics of the Wells Turbine (웰즈터빈의 비정상유동특성에 관한 수치해석)

  • 김태훈;박일규;이연원
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.69-74
    • /
    • 2001
  • The Wells turbine has hysteresis characteristics in a reciprocating flow. In this paper, in order to understand unsteady flow characteristics of the Wells turbine, a sinusoidal flow condition is simulated. The flow conditions and hysteresis characteristics, including blade thickness, are investigated over a period of time. The pressure distributions along the blade surface are investigated at mid-span to clarify the cause of the hysteresis. The result has shown that the hysteresis characteristics become more pronounced as blade thickness becomes larger. The occurrence of these characteristics depends on the varying behavior of wakes between an accelerating flow and a develerating flow.

  • PDF