• 제목/요약/키워드: Unsteady Wake Flow

검색결과 164건 처리시간 0.025초

구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석 (Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere)

  • 이승수;양경수;박찬욱
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.553-559
    • /
    • 2004
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

노즐내 물체의 후류가 아음속 이차원 제트구조에 미치는 영향에 관한 연구 (Effect of a Turbulent Wake on Two-Dimensional Subsonic Jet)

  • 김태호;이상찬;윤복현;오대근;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.986-991
    • /
    • 2003
  • A turbulent wake generated by a cylinder in nozzle contraction affects to the jet flow characteristics. In this study, a computational work to investigate the effect of the turbulent wake on two-dimensional subsonic jet was carried out with three different kinds of nozzle. Computations are applied to the two-dimensional unsteady, Navier-Stokes equations. Several kinds of turbulent models and wall functions are employed to validate the computational predictions. It was known that the wake flow enhanced the spread of the jet flow, compared with no wake flow condition. It was also found that the jet core is shortened by the wake flow developed from a control cylinder.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

원심 압축기 임펠러 출구 유동에 관한 실험적 연구 (Experimental study on impeller discharge flow of a centrifugal compressor)

  • 신유환;김광호;손병진
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF

이상 난류 조건에서의 풍력 터빈 후류 특성 연구 (Investigation of wind-turbine wake characteristics in ideal turbulent inflow)

  • 나지성;고승철;이준상
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, we investigate the wake characteristics in laminar inflow and two different turbulent inflow cases. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. We perform the quantitative analysis of velocity deficit and turbulent intensity in laminar inflow case and turbulent inflow case with different turbulent intensity. In turbulent inflow, unsteady strong wake recovery which is highly fluctuated in time. Normalized power in turbulent inflow case is also highly fluctuated with unsteady wake recovery, while that in laminar inflow has quasi steady characteristic in power generation.

토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구 (A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter)

  • 원찬식;허남건
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.705-710
    • /
    • 2004
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be Propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

  • PDF

토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구 (A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter)

  • 원찬식;허남건
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.36-41
    • /
    • 2006
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

이산와류법을 이용한 비정상 후류의 수치적 모사 (Numerical Simulations of Unsteady Wakes Using a Discrete Vortex Method)

  • 한철희;최근형;조진수
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.397-404
    • /
    • 2001
  • The behavior of unsteady wake vortices for the two-dimensional flat plate is simulated by a discrete vortex method. The flat plates and their wakes are represented by vortex sheets. The vortex sheets are replaced with discrete vortices. The freely deforming wake sheets are computed as a part of solution and the ground effect is included by a image method. In order to predict wake shapes accurately and to model closely coupled aerodynamic interference, a vortex core model and a vortex core addition scheme are used. The simulated wake shapes convecting behind the plates in unsteady motion are compared to a flow visualization result and other numerical results. The present results agree well with them. The present method is also applied to the aerodynamic analysis of flat plates in tandem configuration in ground effect.