• 제목/요약/키워드: Unsteady State Characteristics

검색결과 111건 처리시간 0.022초

MOSS형 LNG 선박의 열공학적 특성에 관한 연구 (A study on the thermal characteristics of MOSS type LNG carrier)

  • 이세동;송성옥;이종원;김춘식;최두열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.28-34
    • /
    • 1998
  • This paper introduced the thermal characteristics of Moss Rosenberg Verft spherical tank type LNG Carrier. Especially described the temperature variation during cooling down condition. It is not easy task to calculate the temperature variation because of unsteady state condition. In this paper, computer simulation program is developed by using a Tomas Algorithm on unsteady state condition and compared with calculation results and experimental results on existing LNG Carrier voyage.

  • PDF

공동주택 최대난방부하 계산법의 분석 (An analysis of the Design heating load calculation in multi-family houses)

  • 조동우
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.

  • PDF

직선형 핀틀 노즐의 길이비에 따른 정상상태와 비정상상태 특성 연구 (Steady and Unsteady State Characteristics of Length Effects about Linear Pintle Nozzle)

  • 정기연;강동기;정은희;이대연;김덕현
    • 한국추진공학회지
    • /
    • 제22권3호
    • /
    • pp.28-39
    • /
    • 2018
  • 본 연구에서는 추력조절용 핀틀 노즐의 길이비에 따른 정상상태와 비정상상태 특성을 파악하기 위해 수치해석을 수행하였다. 노즐과 핀틀의 영역은 분리하여 격자를 생성하고 중첩격자기법을 사용하였다. 핀틀 형상은 길이비에 따라 5가지로 선택하였고, 정상상태 해석결과 핀틀의 길이가 길수록 추력과 추력계수가 높게 나타났다. 비정상상태 해석의 경우 핀틀의 속도에 따라서 연소실 압력 경향이 달라지며 추력과 유동구조에 영향을 미친다. 노즐 출구에서의 추력은 노즐목 단면적 변화에 빠른 응답특성을 보이며, 추력과 추력계수 등 성능 주요 인자들의 예측시 핀틀의 구동 속도와 핀틀 거동에 의한 연소실 압력파의 전달속도를 고려해야 한다.

하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석 (Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream)

  • 안승섭;임동희;박노삼;곽태화
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

핀틀 구동속도에 따른 핀틀 추력기의 비정상상태 특성에 대한 실험적 연구 (Experimental Study on Unsteady-state Characteristics of a Pintle Thruster with Variable Pintle Speeds)

  • 황희성;허환일
    • 한국항공우주학회지
    • /
    • 제44권3호
    • /
    • pp.247-255
    • /
    • 2016
  • 본 논문에서는 핀틀 추력기의 비정상상태 특성을 파악하기 위하여 구동기의 속도를 측정하였으며, 정상상태 실험을 통해 비정상상태 실험 시스템을 구성하였다. 비정상상태 실험은 총 3 가지의 구동 속도(3.01 mm/s, 5.65 mm/s, 10.83 mm/s)를 이용하여 진행하였다. 그 결과 핀틀이 후진하는 경우가 전진하는 경우보다 더 빨리 명령 압력 값에 수렴하였으며, 이는 핀틀이 후진하는 경우가 연소실의 압력이 높은 상태로 형성되어 있기 때문이다. 핀틀이 전 후진하는 경우에 추력 곡선에 특이점들이 나타났으며, 이는 연소실 압력과 노즐 목 면적 변화에 기인하여 나타난 질유량 변화로 인한 것이다. 구동 속도가 빠를수록 이러한 현상이 뚜렷하게 나타났다.

1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성 (Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics)

  • 노성현;김지홍;허환일
    • 한국항공우주학회지
    • /
    • 제43권4호
    • /
    • pp.311-317
    • /
    • 2015
  • 본 연구는 공압시험용 핀틀추력기의 비정상상태 특성을 예측하기 위한 1-D 시뮬레이션 적용법을 기술한다. 추력을 제어하기 위해 질량유량, 챔버압력, 노즐출구 압력은 핵심 매개변수이다. 챔버압력은 핀틀 스트로크 변화에 따라 단조롭게 증감하였지만, 추력은 챔버 압력의 변화와 다른 양상을 보였다. 핀틀이 전진할 때 핀틀 속도와 챔버 자유체적이 특정 값을 초과하면 추력 값은 초기에 감소하다가 다시 증가하는 경향을 보였다. 1-D 시뮬레이션은 비정상 상태 특성을 예측하는데 한계가 있지만 실험이나 수치해석 이전에 듀얼벨 노즐과 같은 다양한 고도보정노즐 추력기의 초기 성능 평가에 여전히 유용하다.

상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석 (Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산 (Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test)

  • 이주연;김종환;배재성
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구 (A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas)

  • 김민호;정우인;천인범
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.