• 제목/요약/키워드: Unsteady Pressure Distribution

검색결과 108건 처리시간 0.025초

상수도관망의 피해율 저감을 위한 가압장 최적운영기법 개발 (Development of optimum pump operation technique for the damage rate reduction of water distribution system)

  • 권혁재
    • 한국수자원학회논문집
    • /
    • 제52권5호
    • /
    • pp.373-380
    • /
    • 2019
  • 본 연구에서는 상수도관망의 피해율 저감을 위한 최적의 펌프운영기법을 제안하였다. 펌프운영시스템은 효과적인 펌프운영을 위하여 개발되었다. 이를 위해 펌프와 소통할 수 있는 압력센서가 상수도관망의 관말단부에 설치되었다. 펌프운영시스템은 관말단의 센서로 부터 수신된 데이터를 통하여 펌프를 제어하게 된다. 따라서 펌프운영시스템은 관말단부에 충분한 유량을 전달할 수 있는 압력을 유지할 수 있고 불필요한 압력을 줄일 수 있다. 펌프운영시스템의 효과를 입증하기 위해 신뢰성해석모형이 사용되었고 기존의 펌프운영시스템과 새로운 펌프운영시스템의 운영결과를 통하여 상수도관의 파괴확률을 정량적으로 비교하였다. 이를 위해서 부정류해석을 수행하였고 그 결과는 파괴확률을 산정하는데 사용되었다. 그 결과, 새로 제시된 펌프운영시스템은 상수도관의 파괴확률을 현저히 낮출 수 있음을 확인할 수 있었다.

Numerical Simulation and Experiment of Pressure Pulsation in Kaplan Turbine

  • Yang, Wei;Wu, Shangfeng;Liu, Shuhong;Wu, Yulin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.729-731
    • /
    • 2008
  • Three-dimensional unsteady simulation using RNG $\kappa-\varepsilon$ turbulence model is used in full flow passage of model Kaplan turbine. Then the pressure pulsation is obtained. Monitoring data of pressure pulsation in the turbine is obtained through experiment and is compared with the numerical simulation. And a good coherence is shown between the simulation and the experiment. Then the regularity of the pressure pulsation s distribution and transmission in the turbine is discussed in detail.

  • PDF

운전점에 따른 3차원 소형축류홴의 와도 특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Vorticity Characteristics of Three-Dimensional Small-Size Axial Fan with Different Operating Points)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.64-70
    • /
    • 2016
  • The unsteady-state, incompressible and three-dimensional large-eddy simulation(LES) was carried out to evaluate the vorticity distribution of a small-size axial fan(SSAF). The X-component vorticity profiles developed around blade tips turn from axial to radial, and diminish the density of distribution according to the increase of static pressure. Otherwise, the Z-component vorticity profiles evenly develop at the region larger than the half radial distance of blade at the operating points of A and B, partly at the trailing-edge region of blade and radially over bellmouth according to the increase of static pressure.

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 (A Numerical Study on the Compression Wave Generated by the Train Entering a Tunnel)

  • 김사량
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.17-21
    • /
    • 2006
  • The numerical simulations on the train entering a tunnel were performed by solving unsteady axi-symmetric problems. In the case that 5th order velocity profile is used to reduce the effects of the pressure wave generated by the train starting abruptly, the effect of the initial distance between the train and the tunnel were examined. The impulsive start gives undesired pressure disturbances to the flow field including inside the tunnel. But 5th order velocity profile with initial distance more than 80 m gives much stable pressure variance in time, and pressure distribution inside the tunnel in space. The distance to the train reaches the highest running velocity from the start should be more than 80 m when the train speed is 350 km/h.

선회실속하의 원심 임펠러 출구 유동 특성 (Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall)

  • 신유환;김광호
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

선회실속하의 원심 임펠러 출구 유동 특성 (Flow Characteristics of centrifugal Impeller Exit Under Rotating Stall)

  • 신유환;김광호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.129-134
    • /
    • 1998
  • This study presents the measured unsteady fluctuation of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that on the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Effects of Non-Uniform Inflow on Aerodynamic Behaviour of Horizontal Axis Wind Turbine

  • KIKUYAMA Koji;HASEGAWA Yutaka;KARIKOMI Kai
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.17-22
    • /
    • 2002
  • Non-uniform and unsteady inflow into a Horizontal Axis Wind Turbine (HAWT) brings about an asymmetric flow field on the rotor plane and an unsteady aerodynamic load on the blades. In the present paper effects of yawed inflow and wind shear are analyzed by an inviscid aerodynamic model based on the asymptotic acceleration potential method. In the analysis the rotor blades are represented by spanwise and chordwise pressure distribution composed of analytical first-order asymptotic solutions for the Laplace equation. As the actual wind field experienced by a HAWT is turbulent, the effects of the turbulence are also examined using the Veers' model.

  • PDF

스크롤 압축기 밸브주변의 비정상유동과 밸브거동에 관한 연구 (A Study on Unsteady Flow and Movement around a Check Valve in a Scroll Compressor)

  • 이진갑;류호선
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.108-113
    • /
    • 1999
  • In a scroll compressor it is generally accepted that a check valve is necessary to prevent reverse rotation of the scrolls. The check valve is subjected to discharge pulsations and their resultant forces. The flow phenomena around the check valve may affect the efficiency and the noise level significantly. The motivation of this study is to understand the flow phenomena and the unstable motion of the check valve on operating conditions in order to identify reasons raising noise and improve the performance of the check valve. In this study, unsteady flow simulation was performed using CFD and the pressure distribution around the check valve was obtained. This paper also shows that unstable motion of the check valve on standard operating conditions through theoretical analysis and flow visualization.

  • PDF

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.