• 제목/요약/키워드: Unsteady Foil

검색결과 35건 처리시간 0.026초

히빙운동익에 작용하는 비정상 유체력 특성 (A Study on the Unsteady Fluid Forces Acting on a Heaving Foil)

  • 양창조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.150-156
    • /
    • 2006
  • A Flapping foil Produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 Profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also Presented the experimental results on the unsteady fluid forces of a heaving foil at various Parameters.

동요하는 날개를 이용한 파랑 중 선박의 추력발생 (Propulsion by Oscillating Foil Attached to Ship in Waves)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.31-36
    • /
    • 2013
  • In this paper, the effects of a foil attached to a ship on the ship motion, added resistance, and thrust generation in waves are analyzed. The unsteady theory for a two-dimensional foil is introduced to determine the coupled motion responses of the ship and foil. The thrust caused by the oscillating foil is evaluated and compared to the added resistance of the ship, so that a positive net thrust can be possible in waves. A comparison of the results of unsteady, quasi-steady, and experimental analyses is performed.

히빙운동익에 작용하는 비정상 유체력 특성 (Study on Unsteady Forces Acting on a Heaving Foil)

  • 양창조;김범석;최민선;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF

생체 모방익 추진에 대한 수치적 연구 (Numerical Study of Biomimetic Foil Propulsion)

  • 한철희;이학진;조진수
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.866-872
    • /
    • 2006
  • A numerical study on the propulsive characteristics of a biomimetic foil is done by developing an unsteady linearly-varying strength vortex method. A biomimetic foil is represented as a deforming foil with a tail fin. Present method is verified by comparing the simulated results with results using finite element and finite volume methods. A new boundary condition is imposed by considering the relative rotational velocity, which has not been included in the previous published literature. It is found that the undulation amplitude increases the thrust while maximum thickness is stepping down the thrust. It is also shown that there exists an optimal frequency for maximum thrust generation. It is believed that present results can be used in the investigation of the propulsive characteristics of the biomimetic deforming foil.

피칭 운동익에 작용하는 비정상 유체력 (Unsteady Fluid Forces Acting on a Pitching Foil)

  • 양창조
    • 한국유체기계학회 논문집
    • /
    • 제8권6호
    • /
    • pp.47-54
    • /
    • 2005
  • An oscillating foil can produce a driving force through the generation of a reversed $K\'{a}rm\'{a}n$ vortex street, and it can be expected to be a new highly effective propulsion system. A simple pitching foil model was made and it was operated within a water channel. The wake formation behind a pitching foil was visualized and unsteady fluid forces were measured using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as reduced frequency, amplitude and pivot point in NACA 0010. The results showed that thrust coefficients increased with a reduced frequency. We also presented the experimental results on the characteristics of a pitching foil at various parameters.

피칭익에서 박리되는 와류의 거동 (Dynamic Behavior of Vortices Separated from a Pitching Foil)

  • 양창조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.152-158
    • /
    • 2007
  • Most of experimental visualizations and numerical results on the flow field separated form a leading edge around an unsteady foil show a continuous streakline from the leading edge and large reverse flow between the streakline and the suction surface. However, they have not exactly clarified yet the dynamic behavior of vortices separated from the leading edge because separation around an unsteady foil is very complicated phenomenon due to many parameters. In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate. Futhermore the vortices moving up to the leading edge on the suction surface of the pitching foil are visualized. They play an important role to balance the number of vortex shedding from both edges.

상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향 (Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade)

  • 배상수;강동진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

MIT 요동 익형의 수치해석 : 비정상 유동 특성 (Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics)

  • 배상수;강동진;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

3차원 비틀어진 날개 주위의 비정상 공동 현상에 대한 수치해석 (Numerical Analysis of Unsteady Cavitating Flow on a Three-dimensional Twisted Hydrofoil)

  • 박선호;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.31-40
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method. non-cavitating and cavitating flow over a modified NACA66 foil section was simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.

  • PDF

3차원 비틀어진 날개 주위의 비정상 공동 유동에 대한 수치적 연구 (NUMERICAL INVESTIGATION OF UNSTEADY CAVITATING FLOW ON A THREE-DIMENSIONAL TWISTED HYDROFOIL)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.37-46
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method, non-cavitating and cavitating flows over a modified NACA66 foil section were simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.