• 제목/요약/키워드: Unsteady Flow-Field

검색결과 410건 처리시간 0.022초

U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측 (Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique)

  • 허승;정철웅
    • 한국음향학회지
    • /
    • 제34권1호
    • /
    • pp.36-45
    • /
    • 2015
  • 유동광대역소음을 효율적으로 예측하기 위하여 통계적으로 난류를 재생하는 방법에 대한 많은 연구들이 최근에 진행되고 있다. 그 중에서도, FRPM(Fast Random Particle Mesh) 기법은 RANS(Reynolds-Averaged Navier-Stokes) 방정식 해석을 통해 도출된 정상상태 유동장의 난류 운동에너지와 소산 값을 이용하여 특정한 통계적 특성을 가지는 난류를 재생하는 기법으로서 유동광대역소음 문제 등에 성공적인 적용 예에 대해서 보고되고 있다. 하지만 기존의 FRPM 방법은 축류팬과 같이 축 대칭 특성을 갖는 기계의 경우 정상상태의 유동장을 기초로 광대역소음을 예측하는 문제에는 적용할 수 있으나, 원심팬과 같이 볼루트 영역으로 인하여 축 대칭이 성립되지 않는 기계류의 유동광대역소음에는 적용할 수 없다. 본 연구에서는 이러한 FRPM 기법을 확장하여, 원심팬에서 발생하는 광대역소음을 효율적으로 예측하기 위하여 비정상 RANS 방정식의 수치해와 연계하여 광대역소음원으로 고려되는 난류를 특정한 통계적 특성을 가지도록 재생할 수 있는 U-FRPM(Unsteady-FRPM) 기법을 제안하였다. 먼저 전산유체역학을 사용하여 RANS 방정식을 해석함으로써, 원심팬 주위의 비정상상태 유동장 정보를 도출하고, 음향상사법(Acoustic Analogy)을 기초로 도출된 유동소음원을 U-FRPM을 이용하여 모델링하였다. 모델링된 소음원은 경계요소법을 통해 구현되는 선형음향전파모델과 연계하여 수음점에서 광대역소음을 예측하는데 이용되었다. 예측된 결과와 실험결과의 비교를 통해 본 논문에서 제시한 방법의 유효성을 확인하였다.

홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정 (Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.530-535
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at $Ra = 6.35{\times}10^6$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful for analyzing the temperature field variations of unsteady thermal fluid flows.

  • PDF

홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정 (Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1624-1631
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at Ra = 6.35 $\times$ 10$^{6}$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful fur analyzing the temperature field variations of unsteady thermal fluid flows.

Supersonic and Subsonic Projectile Overtaking Problems in Muzzle Gun Applications

  • Gopalapillai, Rajesh;Nagdewe, Suryakant;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.711-722
    • /
    • 2008
  • A projectile when passes through a moving shock wave, experiences drastic changes in the aerodynamic forces as it moves from a high-pressure region to a low pressure region. These sudden changes in the forces are attributed to the wave structures produced by the projectile-flow field interaction, and are responsible for destabilizing the trajectory of the projectile. These flow fields are usually encountered in the vicinity of the launch tube exit of a ballistic range facility, thrusters, retro-rocket firings, silo injections, missile firing ballistics, etc. In earlier works, projectile was assumed in a steady flow field when the computations start and the blast wave maintains a constant strength. However, in real situations, the projectile produces transient effects in the flow field which have a deterministic effect on the overtaking process. In the present work, the overtaking problem encountered in the near-field of muzzle guns is investigated for several projectile Mach numbers. Computations have been carried out using a chimera mesh scheme. The results show that, the unsteady wave structures are completely different from that of the steady flow field where the blast wave maintains a constant strength, and the supersonic and subsonic overtaking conditions cannot be distinguished by identifying the projectile bow shock wave only.

  • PDF

유동-음향 분리 기법에 의한 횡류홴의 공력 소음 예측 (Aeroacoustic Tonal Noise Prediction of Cross-Flow Fan by a Hydrodynamic-Acoustic Splitting Method)

  • 조용;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1869-1874
    • /
    • 2004
  • Acoustic pressure field around the cross-flow fan is predicted by a hydrodynamic-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using an unstructured finite-volume method on the triangular meshes, while the acoustic waves generated inside the cross-flow fan are predicted by solving the perturbed compressible equations(PCE) with a 6th-order compact finite difference method. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades wakes with the stabilizer, which then are reflected from the rear-guider and mainly propagate towards the fan inlet. Also, a directivity of BPF noise predicted by the PCE is noticeably different from that of the FW-H equations, in which a fan casing effect cannot be included.

  • PDF

PIV에 의한 가정용 온수펌프의 유동장 계측 (Measurement of Flow Field in a Domestic Hot-Water Pump by PIV)

  • 이현;임유청;김재현;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

축류 압축기내의 2차원 유동 특성 (Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor)

  • 홍성훈;백제현
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구 (Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

Chimera 격자기법을 이용한 자동차 주위의 유동장 해석 (Analysis of the flow field around an automobile with Chimera grid technique)

  • 안민기;박원규
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.39-51
    • /
    • 1998
  • This paper describes the analysis of flow field around an automobile. The governing equations of the 3-D unsteady incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. To validate the capability of simulating the flow around a ground vehicle, the flows around the Ahmed body with 12.5$^{\circ}$ and 30$^{\circ}$ of slant angles are simulated and good agreements with experiment and other numerical results are achieved. To validate Chimera grid technique, the flow field around a cylinder was also calculated. The computed results are also well agreed with other numerical results and experiment. After code validations, the flow phenomena around the ground vehicle are evidently shown. The flow around the side-view mirror is also well simulated using the Chimera grid technique.

  • PDF