• Title/Summary/Keyword: Unsteady Flow-Field

Search Result 410, Processing Time 0.028 seconds

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Kim H. W.;Ha S. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme (병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석)

  • Ko Soon-Heum;Choi Seongjin;Kim Chongam;Rho Oh-Hyun;Park Jeong-joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

Numerical Investigation on the Flapping Wing Sound (플래핑 날개의 음향 특성에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3209-3214
    • /
    • 2007
  • This study numerically investigates the unsteady flow and acoustic characteristics of a flapping wing using a hydrodynamic/acoustic splitting method. The Reynolds number based on the maximum translation velocity of the wing is Re=8800 and Mach number is M=0.0485. The flow around the flapping wing is predicted by solving the two-dimensional incompressible Navier-Stokes equations (INS) and the acoustic field is calculated by the linearized perturbed compressible equations (LPCE), both solved in moving coordinates. Numerical results show that the hovering sound is largely generated by wing translation (transverse and tangential), which have different dipole sources with different mechanisms. As a distinctive feature of the flapping sound, it is also shown that the dominant frequency varies around the wing.

  • PDF

Rain-wind induced vibration of inclined stay cables -Part I: Experimental investigation and physical explanation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.471-484
    • /
    • 2003
  • The rain-wind induced vibration of stays is a phenomenon discovered recently and not well explained yet. As it is influenced by a wide range of physical parameters (cable size and shape, wind speed, direction and turbulence, rain intensity, material repellency and roughness, cable weight, damping and pre-strain), this peculiar phenomenon is difficult to reproduce in laboratory controlled conditions. A successful wind tunnel experimental campaign, in which some basic physical quantities were measured, allowed an extensive analysis as to identify the parameters of the rain-wind induced excitation. The unsteady pressure field and water thickness around a cable model were measured under rainy-excited conditions. The knowledge of those parameters provided helpful information about the air-flow around the cable and allowed to clarify the physical phenomenon which produces the excitation.

The Characteristics of Triple Hot-Wire Probe and It's Evaluation (3축 열선 PROBE의 특성과 그 평가)

  • Kim, Kyung-hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-62
    • /
    • 1988
  • A triple hot-wire probe has an essential potentiality for the measure- ment of an instantaneous velocity vector in a three dimensional unsteady flow with large amplitude of velocity fluctuations, the key problems asso- ciated with this instrument are the directional range of applicability and the accuracy. This present paper is concerned with a new method of the techniques of calibration and data processing to estimate the three dimensional flow field using an arbitrary shaped triple hot-wire probe. The method is not based on the assumptions of orthogonality or symmetry and it is especially useful for applications to a hand-made probe where probe geometry is not accurately known. The test application is made to evaluate the effect of cone angles of symmetric non-orthogonal probe.

  • PDF

NUMERICAL ANALYSIS FOR A SILENCER OF TANK GUN (대구경 화포의 소음기에 대한 수치해석)

  • Ko S. H.;Lee D. S.;Woo S. D.;Kang K. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.59-65
    • /
    • 2005
  • A numerical analysis was made to investigate the simple silencer for high pressure blast flow fields. Reynolds-Averaged Navier-Stokes equations were solved for an axisymmetric computational domain constructed by multi block grids. A blast flow field without the silencer was also calculated to validate the present numerical method. The effect of pressure diminution for the silencer was calculated by comparing with and without silencer at the atmosphere region. It was found that the tested silencer could achieve 89.4 percent pressure diminution.

NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE (안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석)

  • Ji Y.M.;Lee J.W.;Park J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF