• Title/Summary/Keyword: Unsteady Flow Separation

Search Result 152, Processing Time 0.02 seconds

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.