• 제목/요약/키워드: Unsteady Electroosmotic Flow

검색결과 2건 처리시간 0.015초

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델 (A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels)

  • 곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF