• 제목/요약/키워드: Unsteady Combustion Pressure Oscillation

검색결과 21건 처리시간 0.024초

액적 분사/연소를 고려한 초음속 엔진의 buzz 특성 (Buzz Characteristic of Supersonic Propulsion System with Spray Injection and Combustion)

  • 김성진;염효원;성홍계;길현용;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.411-414
    • /
    • 2010
  • 초음속 엔진에서 흡입구의 buzz현상은 큰 압력진동과 연소 불안정성 그리고 추력 감소 등을 야기한다. 흡입구의 buzz현상과 액적 분사/연소의 동적인 상호관계를 이해하기 위하여 통합된 비정상 연소수치해석을 수행하였으며, 액적 모사를 위하여 TAB(Taylor Analogy Breakup) model을 적용하였다. 흡입구에서의 충격파거동과 주요 위치에서 압력거동을 분석하고 초음속 엔진 전영역에서의 음향모드를 분석하여 현 시스템의 동적거동을 파악하였다.

  • PDF

모사 SNG 연료를 적용한 모델 가스터빈 연소기의 연소 불안정성에 관한 실험적 연구 (An Experimental Study on Combustion Instability in Model Gas Turbine Combustor using Simulated SNG Fuel)

  • 최인찬;이기만
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.32-42
    • /
    • 2015
  • The combustion instability was experimentally investigated in model gas turbine combustor with dual swirl burner. When such instability occurs, a strong coupling between pressure oscillation and unsteady heat release excites a self-sustained acoustic wave which results in a loud sound, and can even cause fatal damage to the combustor and entire system. In present study, to understand the combustion instability with a premixed mixture, the detailed periods of pressure and heat release data in unstable flame mode were investigated by various measurement methods at relatively rich condition and lean condition near flammable limits. Also, to prepare the utilization of synthetic natural gas (SNG) fuel in gas turbine system, an investigation was conducted using a simulated SNG including methane as a reference fuel to examine the effects of $H_2$ content on flame stability. These results provide that the instability due to flash-back behaviour like CIVB phenomenon occurred at rich condition, while the repetition of relighting and extinction caused the oscillation of lean condition near flammable limit. From the analysis of $H_2$ content effects, it is also confirmed that the instability frequency is proportional to the laminar burning velocity at both rich and lean condition.

모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구 (LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor)

  • 황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

스크램제트 연소기 내의 난류 연소 유동 해석 (Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors)

  • 최정열;원수희;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

스월연소기의 난류와 화학반응 간섭효과 (Interaction Effects of Turbulent Flow and Chemical Reaction in a Swirl Combustor)

  • 성홍계;김종찬;;차봉준;안이기
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.71-74
    • /
    • 2007
  • 희박 예혼합 스월 연소기의 난류 연소와 화학반응간의 간섭 메커니즘을 파악하기 위하여 Large Eddy Simulation(LES)을 수행하였다. 난류 화염의 유동 특성을 자세히 살펴보기 위하여 비정상 난류 연소 수치해석 기법을 적용하여, 약간의 연료 덩어리가 일차연소영역(Primary combustion zone)에서 빠져나와 선회 방향으로 흘러 국부적 핫스팟(hot spot)을 발생시키며, 이는 large vortical structure를 만들어 내는 것을 관찰 할 수 있었다. 압력변동과 비정상 열 방출 사이의 관계는 공간 및 시간적 Rayleigh parameter에 의해 고찰되었다.

  • PDF

강한 음향장에 구속된 고압 액적의 연소 (Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode)

  • 김성엽;신현호;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

가진된 덤프 연소기 내에서의 비예혼합 화염 거동 (Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor)

  • 박정규;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

초음속 연소기 내의 연소 불안정 메커니즘 (Mechanism of Combustion Instability in Supersonic Combustor)

  • 최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2003
  • A series of computational simulations have been carried out for non-reacting and reacting flows in a supersonic combustor configuration with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure of 0.5 and 1.0 ㎫. The corresponding equivalence ratios are 0.17 and 0.33. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The role of the cavity, injection pressure, and amount of heat addition are examined systematically.

  • PDF

하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정 (Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion)

  • 김진아;이창진
    • 한국항공우주학회지
    • /
    • 제49권7호
    • /
    • pp.573-580
    • /
    • 2021
  • 파라핀 왁스는 높은 후퇴율 때문에 하이브리드 로켓의 연료로 많은 각광을 받고 있다. 하지만 파라핀 연료의 연소에서도 비정상적인 저주파수 연소압력 진동이 관찰되고 있는데, 이는 연료 표면에 형성된 액체층과 액적의 유입과 관련이 있는 것으로 추론된다. 본 연구는 액적에 의한 추가적 연소와 저주파수 연소불안정 발생과의 관계를 분석하였다. 한편, 액적의 발생은 관성력과 액체의 표면장력의 비로 정의되는 We수(Weber Number)와 액체층의 Re수(Reynolds Number)에 따라 변화하는 것으로 알려져 있다. 따라서 일차적으로 실험실 규모의 로켓을 사용하여 We수에 따른 연소불안정의 발생여부를 관찰하였다. We수의 조절은 산화제 유량 변화를 통한 관성력의 변화와 LDPE(Low Density Polyethylene) 첨가에 의한 표면장력의 변화를 통해 시도하였다. 저주파수의 연소불안정의 발생은 특정한 We수 이상에서만 관찰되었고 임계 We수가 존재하는 것을 확인하였다.