• 제목/요약/키워드: Unsteadiness

검색결과 83건 처리시간 0.023초

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.

1단 축류압축기 내부 유동의 2차원 비점성 해석 (2-D Inviscid Analysis of Flow in One Stage of Axial Compressor)

  • 김현일;박준영;백제현;정희택
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

Phase Diagram에 의한 밀폐캐비티의 비정상 유동특성 (Unsteady Flow Characteristics of Closed Cavity by Phase Diagram)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.770-777
    • /
    • 1999
  • In this study a phase diagram has been used to investigate the unsteadiness of two-dimensional lid-driven closed flows within a square cavity for twelve Reynolds numbers; $7.5{\times}10^3,\; 8{\times}10^3,\; 8.5{\times}10^3,\; 9{\times}10^3,\; 9.5{\times}10^3,\; 10^4,\;1.5{\times}10^4,\;2{\times}10^4,\; 3{\times}10^4,\; 7.5{\times}10^4$ and $10^5$. The results indicate that the first critical Reynolds number at which the flow unsteadiness of sinusoidal fluctuation appears from the temporal variation of total kinetic energy curves is assumed of sinusoidal fluctuation appears form the temporal variation of total kinetic energy curves is assumed to be in the neigh-bourhood of $Re=8.5{\times}10^3$ The second critical Reynolds number where the periodic amplitude and frequency collapse to random disturbance being existed around $Re=1.5{\times}10^4$ The exponentially decreasing vortices formed at the lower two corners are found commonly at the time-mean flow pattern of $Re=3{\times}10^4$.

  • PDF

주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향 (The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil)

  • 정하승;이준식;강신형
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구 (Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump)

  • 안영준;신병록
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

복합지형상에서 비정상 박리흐름에 의한 확산 (Dispersion in the Unsteady Separated Flow Past Complex Geometries)

  • 류찬수
    • 한국지구과학회지
    • /
    • 제22권6호
    • /
    • pp.512-527
    • /
    • 2001
  • 복합지형을 지나는 박리흐름(separated flows)들이 와도 이론에 의해 모델링 되었다. 흐름은 비회전성 및 비점성으로 가정하였으며, 선형 시어흐름에 대한 유선함수를 결정하기 위해 새로운 기법이 기술되었다. 지형지물의 형태로는 snow cornice과 backward-facing step을 정의하였으며, 이러한 지형지물의 후미에는 유체의 박리현상과 역류현상(reattachment)이 생긴다. 유체의 박리현상이 지형지물의 가장자리에 발생되게 하기 위해 점 와도를 흐름에 발생시켰고, 지형지물의 가장자리에 있는 뾰족한 부분을 완화하고 최대곡률 부근에서의 섭동운동에 중요한 박리흐름 발생지점의 구속조건을 없애기 위해 conformal mapping을 수정하였다. 와도 발생지점에서 와도를 평형으로부터 이동시키거나, 또는 임의의 섭동을 초기흐름에 가하는 방식으로 섭동을 가하여 비정상흐름을 발생시켰다. 박리지점의 풍상측에서 연속적으로 방출되고, 또한 bubble의 이차순환에 의해 변형된 물질의 궤적들이 수치적으로 적분되었으며, 시간에 대한 농도누적이 역류지점의 풍하측 고정된 지점에서 계산되었다. 본 연구에 사용된 모델은 방출물질의 확산형태와 간헐성을 제대로 다룰 수 있음을 알 수 있으며, 이산적인 방법에 의한 다중-와도모델 및 수치모델의 결과들과도 일치한다. 본 연구에 의하면, 박리 및 역류현상이 있는 유체의 흐름 속에 순환하는 bubble들의 비정상상태(unsteadiness)는 풍하측에서 대규모의 고농도 누적을 일으키는 주요 원인이다.

  • PDF

초음속연소유동의 수치해석연구 (Numerical Simulation of Supersonic Combustion Flows)

  • 정인석;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.32-39
    • /
    • 2005
  • Recently, renewed interest on the scramjet engine has been demonstrated through the many international activities along the several Asia-Pacific countries. Here, a short review of current activities on supersonic combustion in a scramjet engine will be addressed followed by the discussions on the review of numerical simulation on supersonic combustion phenomena related with scramjet engine combustors and ram accelerator. Emphasis was put on the grid refinement, scheme, unsteadiness and phenomenological differences.

  • PDF

비정상 자연대류의 수치 계산 (Numerical Simulations of Unsteady Natural Convection)

  • 곽호상;현재민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.10-15
    • /
    • 1997
  • Unsteady natural convection of an enclosed fluid has been one of the fundamental thermo-fluid problems, of which dynamic relevance is found in many engineering applications. Together with the inherent coupling between the boundary layers and the interior core, and strong interaction between flow and temperature fields, the unsteadiness poses serious hurdles for analytical and experimental approaches. With the recent development of computers and solution algorithms, computational fluid dynamics has become the prevailing tool to tackle the underlying problems. In this presentation, a few examples of numerical studies are introduced. The usefulness and potential of numerical simulations in investigating unsteady natural convection are elaborated.

  • PDF