• Title/Summary/Keyword: Unstable fracture

Search Result 178, Processing Time 0.021 seconds

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

The clinical characteristics and prognosis of subgaleal hemorrhage in newborn

  • Lee, Sun Jin;Kim, Jin Kyu;Kim, Sun Jun
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.12
    • /
    • pp.387-391
    • /
    • 2018
  • Purpose: Subgaleal hemorrhage (SGH) is a rare but potentially fatal condition in newborns; however, few studies have reported on this condition. We aimed to identify the clinical characteristics and prognostic factors of SGH. Methods: We retrospectively reviewed the medical records of 20 neonates diagnosed with SGH between January 2000 and June 2017. Enrolled neonates were clinically diagnosed when they had tender fluctuant scalp swelling that crossed the suture lines. Results: Among 20 neonates with SGH, 12 were boys and 7 were girls; median hospitalization duration was $9.7{\pm}6.9days$. Fourteen neonates (70%) were born via vacuum-assisted vaginal delivery, and 4 via vacuum-assisted cesarean section. Of the neonates enrolled, half of them initially showed unstable vital signs, including apnea, desaturation, and cyanosis. Ten neonates had acidosis and 3 had asphyxia (pH<7.0). Intracranial lesions associated with SGH were observed in 15 neonates (75%), including subdural hemorrhage (50%), subarachnoid hemorrhage (15%), intraventricular hemorrhage (5%), cerebral infarct (15%), skull fracture (30%), and cephalohematoma (20%). Twelve neonates (60%) required transfusion, 5 (25%) had seizures, and 3 (15%) died. Eight neonates (40%) had hyperbilirubinemia (mean total bilirubin, $13.1{\pm}7.4$). The mean follow-up period was $8.4{\pm}7.5months$. At follow-up, 10 neonates (58.8%) were healthy with normal development, whereas 7 (41.2%) had neurological deficits. Conclusion: The morbidity rate was 41.2% due to severe metabolic acidosis. Anemia, hyperbilirubinemia, low Apgar scores, and subdural hemorrhage did not affect the prognosis. The long-term outcomes of neonates with SGH are generally good. Only arterial blood pH was significantly associated with death.

Stability Evaluation of Anchors Using Lift-off Field Test (리프트오프 현장시험을 이용한 앵커의 안정성 평가)

  • Choi, Tae Sic;Yun, Jung Mann;Kim, Yong Seong;You, Seung Kyong;Lee, Kang Il
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.128-142
    • /
    • 2021
  • Purpose: This study examines the safety management of anchors that have already been constructed and evaluates the results of lift-off tests conducted at the site. The purpose of the project is to study countermeasures if necessary. Method: Compare the residual load gained after the lift-off test at 36 points behind the site with the preemptive load, allowable load, and design load. We also analyze stability through this and evaluate the stability of anchors. Results and Conclusion: The residual tension at 26 points remained stable. However, the residual load at 10 points was analyzed to be greater than the designed load and less than the allowable load, and it was evaluated as an instability that could cause fracture problems. Therefore, anchors with unstable conditions at 10 points should be monitored and monitored through periodic measurements and quality tests, and the anchor should be observed at the surrounding points as well as the relevant points to maintain stability.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

Management of a traumatic anorectal full-thickness laceration: a case report

  • Fortuna, Laura;Bottari, Andrea;Somigli, Riccardo;Giannessi, Sandro
    • Journal of Trauma and Injury
    • /
    • v.35 no.3
    • /
    • pp.215-218
    • /
    • 2022
  • The rectum is the least frequently injured organ in trauma, with an incidence of about 1% to 3% in trauma cases involving civilians. Most rectal injuries are caused by gunshot wounds, blunt force trauma, and stab wounds. A 46-year-old male patient was crushed between two vehicles while he was working. He was hemodynamically unstable, and the Focused Assessment with Sonography for Trauma showed hemoperitoneum and hemoretroperitoneum; therefore, damage control surgery with pelvic packing was performed. A subsequent whole-body computed tomography scan showed a displaced pelvic bone and sacrum fracture. There was evidence of an anorectal full-thickness laceration and urethral laceration. In second-look surgery performed 48 hours later, the pelvis was stabilized with external fixators, and it was decided to proceed with loop sigmoid colostomy. A tractioned rectal probe with an internal balloon was positioned in order to approach the flaps of the rectal wall laceration. On postoperative day 13, a radiological examination with endoluminal contrast injected from the stoma after removal of the balloon was performed and showed no evidence of extraluminal leak. Rectosigmoidoscopy, rectal manometry, anal sphincter electromyography, and trans-stomic transit examinations showed normal findings, indicating that it was appropriate to proceed with the closure of the colostomy. The postoperative course was uneventful. The optimal management for extraperitoneal penetrating rectal injuries continues to evolve. Primary repair with fecal diversion is the mainstay of treatment, and a conservative approach to rectal lacerations with an internal balloon in a rectal probe could provide a possibility for healing with a lower risk of complications.

Hook Plate Fixation for Unstable Distal Clavicle Fractures: A Prospective Study (불안정 원위 쇄골 골절의 치료에서 Hook 금속판을 이용한 전향적 연구)

  • Kim, Kyung-Cheon;Shin, Hyun-Dae;Cha, Soo-Min;Jeon, Yoo-Sun
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • Purpose: We wanted to analyze and report on the radiologic and clinical results of prospective Hook plate fixation for unstable distal clavicle fractures after a minimum of 2 years follow up. Materials and Methods: We followed up 17 out of 20 cases that underwent prospective Hook plate fixation from 2008 to 2009. We performed radiologic follow up at 2 weeks, 6 weeks, 3 months, 6 months, 18 months and 24 months postoperatively. The clinical results were evaluated at 12 months and 24 months postoperatively. Results: The mean period for bony fusion was 14.5 weeks and the plate was removed after an average of 20.2 weeks. The VAS pain scores were 0.7 and 0.8, the UCLA scores were 33.5 and 33.3, the ASES scores were 92.8 and 92.5, the Constant-Murley scores were 81.5 and 77.0, the KSS scores were 92.5 and 94.3 and the ranges of motion were $173.3^{\circ}$ and $173.7^{\circ}$ of flexion, $56.0^{\circ}$ and $54.5^{\circ}$ of external rotation, $62.3^{\circ}$ and $63.5^{\circ}$ of the internal rotation, $172.0^{\circ}$ and $172.6^{\circ}$ of abduction and $43.3^{\circ}$, and $42.9^{\circ}$ of extension at 1 and 2 years follow-up, respectively. There was no statistically significant difference of clinical outcomes and the range of motion at 1 year and 2 year postoperatively (p>0.05). There was no other complication except 1 case of delayed union. Conclusion: For Hook plate fixation at 2 years postoperatively, the complications will be decreased and excellent clinical results should occur.

A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish (전해Ni, 무전해 Ni pad에서의 Cu 함량에 따른 접합 신뢰성에 관한 연구)

  • Lee, Hyun Kyu;Chun, Myung Ho;Chu, Yong Chul;Oh, Kum-Sool
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.51-56
    • /
    • 2015
  • It has been used various pad finish materials to enhance the reliability of solder joint and recently Electroless Ni Electroless Pd Immersion Gold (the following : ENEPIG) pad has been used more than others. This study is about reliability according to being used in commercial Electrolytic Ni pad and ENEPIG pad, and was observed behavior of various Cu contents. After reflow, the inter-metallic compound (IMC) between solder and pad is composed of $Cu_6Sn_5$ (Ni substituted) by using EDS, and in case of ENEPIG, between IMC and Ni layer was observed the dark layer ($Ni_3P$ layer). Additional, it could be controlled the thickness of dark layer according to Cu contents. Investigated the different fracture mode between electrolytic Ni and ENEPIG pad after drop shock test, in case of soft Ni, accelerated stress propagated along the interface between $1^{st}$ IMC and $2^{nd}$ IMC, and in case of ENEPIG pad, accelerated stress propagated along the weaken surface such as dark layer. The unstable interface exists through IMC, pad material and solder bulk by the lattice mismatch, so that the thermal and physical stress due to the continuous exterior impact is transferred to the IMC interface. Therefore, it is strongly requested to control solder morphology, IMC shape and thickness to improve the solder reliability.

Plate Fixation for Fractures of the Coronoid Process of the Ulna (금속판을 이용한 구상돌기 골절의 치료)

  • Shin, Dong-Ju;Byun, Young-Soo;Cho, Young-Ho;Park, Ho-Won;Youn, Hee-Min;Han, Jae-Hui
    • Clinics in Shoulder and Elbow
    • /
    • v.11 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate the results of eight cases of coronoid process fractures that were fixed with a plate. Materials and Methods: Eight coronoid process fractures were treated by plating and these cases were reviewed retrospectively. Six patients were men and two were women. The average age was 41 years (range: 22-79) at the time of injury. According to Regan's classification, there were five type 2 and three type 3. According to O'Driscoll's classification, there were five anteromedial type and three base type. Open reduction and internal fixation with a plate were performed through a medial approach by splitting of the two heads of the flexor carpi ulnaris. The patients were follow-up for a mean of 15.8 months (range: 6-25). We evaluated the clinical outcomes with using the Mayo Elbow Performance Score. Results: The average active motion of the elbow joint was $120^{\circ}$. The average Mayo Elbow Performance Score was 86.9. There were 5 excellent results, 1 good result and 2 fair results. Summary: Plating through a medial approach of the elbow provided stable fixation and satisfactory union for treating displaced coronoid process fractures with the unstable elbow.

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.