• 제목/요약/키워드: Unstable energy

검색결과 373건 처리시간 0.026초

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

FRC의 휨인성 평가시 외부변형과 불안정성의 영향 및 처리방안 (The Influence and Treatment Method of Extraneous Deformation & Unstability on the Flexural Toughness of FRC)

  • 김경수;김남욱;임정환;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.119-128
    • /
    • 2002
  • This study discusses the issues related to the accuracy of deflection measurement and unstable energy in the testing of FRC. Some deflection methods may include large extraneous deformations. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and inaccurate toughness evaluation can result from this faulty curve. Some load-deflection curve of FRC may be attributed to unstable region of the load-deflection curve. If the unstable region is not correctly evaluated toughness indices from the curve would inappropriately represent true indices. In this paper, the discussion will focus on the effects of the deflection measuring system both on the measurement of the load-deflection response of FRC and the evaluation of FRC toughness and the effects of the unstable region and the management method of unstable region on toughness evaluation of FRC. It is observed that ASTM toughness indices which is based on measured deflection at first cracking is influenced significantly by extraneous deformation of deflection measurement. Extraneous deformation in deflection measurement, however result in negligible errors in toughness evaluation if JSCE and JCI definitions are used.

에너지함수를 이용한 과도불안정 시스템의 안정화 방법 (A New Stabilizing Method for Transiently Unstable Systems by Using Transient Energy Function)

  • 김정우;전영환
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.567-575
    • /
    • 2008
  • Transient security assessment(TSA) is becoming an essential requirement not only for security monitoring but also for stabilizing control of power systems under new electricity environments. It has already been pointed out that fast transient stability study is an important part for monitoring and controlling system security. In this paper, we discuss an energy function method for stabilizing control of transiently unstable systems by introducing generator tripping system to enhance the transient stability of power systems. The stabilization with less tripped power can be obtained by tripping the generators faster than out-of-synchronism relay. Fast transient stability assessment based on the state estimation and direct transient energy function method is an important part of the stabilizing scheme. It is possible to stabilize the transiently unstable system by tripping less generators before the action of out-of-synchronism relay, especially when a group of generator are going to be out-of-synchronism. Moreover, the amount of generator output needed for tripping can be decided by Transient Energy Function(TEF) method. The main contribution of this paper is on the stabilizing scheme which can be running in the Wide Area Control System.

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

GRM(Gaussian Reflectivity Mirror)을 이용한 불안정 공진기형 Q-스위치 Nd:YAG 레이저의 출력특성 (Output Characteristics of a Q-Switched Nd:YAG laser with GRM(Gaussian Reflectivity Mirror) unstable resonator)

  • 이희철;김용평
    • 한국광학회지
    • /
    • 제16권2호
    • /
    • pp.152-158
    • /
    • 2005
  • 출력거울로 GRM(Gaussian reflectivity mirror)을 채택한 불안정 공진기를 구성하여 그 Q-스위치 출력의 특성을 분석하였다. 입력 전기에너지가 55J 일 때 1064 nm의 기본파장에서 470 mJ, 532 nm의 제2고조파 파장에서 280 mJ의 출력 에너지를 얻었다. 출력빔의 발산각은 1.7 mrad 이었으며 근접장 영역에서 Top-Hat 형태의 빔을 얻을 수 있었다.

제주 동복·북촌 풍력발전단지의 바람환경 특성분석 (Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju)

  • 정형세;김연희;최희욱
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

에너지 가격, 탱커운임지수, 불확실성 사이의 연계성 분석 (Analysis of connectedness Between Energy Price, Tanker Freight Index, and Uncertainty)

  • 김부권;윤성민
    • 한국항만경제학회지
    • /
    • 제38권4호
    • /
    • pp.87-106
    • /
    • 2022
  • 기술발전(셰일가스, 셰일오일), 무역전쟁, COVID-19, 러시아-우크라이나 전쟁 등으로 인해 에너지 시장의 불확실성이 확대되고 있다. 특히, 2020년 이후 COVID-19, 러시아-우크라이나 전쟁의 영향으로 장기화된 수요 감소로 인한 상품 운송의 공급체인의 변화 등으로 인해 에너지 시장의 국제적 교역에 대한 위험이 크게 증가하고 있다. 본 연구에서는 이러한 점을 고려하여 에너지 시장에서의 국제적 교역의 연계성을 파악하기 위해 에너지 가격, 탱커운임지수, 불확실성 사이의 연계성을 분석하였다. 주요 분석결과를 요약하면 다음과 같다. 첫째, MS-VAR 모형을 이용하여 에너지 가격 모형의 안정기와 불안정기를 분석한 결과 원유시장 모형과 천연가스시장 모형 모두 불안정기에 비해 안정기가 유지될 확률이 더 높게 나타나 특정 사건에 의해 변동성이 확대된다는 것을 확인할 수 있었다. 둘째, 에너지 시장의 안정기와 불안정기의 연계성 분석 결과를 살펴보면, 총 연계성의 경우 원유시장 모형과 천연가스시장 모형 모두 안정기에 비해 불안정기에 변수 간에 연계성이 확대된다는 것을 확인할 수 있었다. 에너지 시장의 안정기의 경우 연계성 정도를 고려했을 때, 수요측 요인을 대표하는 탱커 운임지수의 효과가 크다는 것을 확인하였다. 셋째, 에너지 시장의 불안정기는 원유시장 모형에 비해 천연가스 시장의 연계성이 급격하게 증가하는 것으로 보아 원유시장에 비해 에너지 가격에 영향을 미치는 불확실성이 확대되면 천연가스 시장의 변동성 전이 효과가 더 큰 것으로 나타났다.

엔트로피 모드에 의한 비선형 불안정 파동 (Nonlinearly Unstable Waves Dominated by Entropy Mode)

  • 윤웅섭
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.99-109
    • /
    • 1999
  • 자동차, 항공기 혹은 로켓엔진 유동장의 불안정 파동은 음향모드와 와류모드 및 엔트로피 모드에 의해 복합적으로 발생한다. 본 연구에서는 이들 모드를 모두 포함하는 불안정 해석이론을 바탕으로 고체추진 로켓엔진 연소실의 내부유동을 대상으로 불안정 파동 증폭요인에 의한 영향을 고찰하였다. 연구결과 불안정 에너지 증폭계수의 증가에 따라 에너지 증폭율 관련변수들이 증가하며 에너지 증폭율 관련변수들은 층류보다 난류에서 더 크게 나타났다. 또한 고온의 측면-연소 로켓의 불안정 파동은 엔트로피 모드에 의해 지배되며 와류모드에 다소간 영향을 받고 음향모드에는 거의 영향을 받지 않았다.

  • PDF