• Title/Summary/Keyword: Unstable Phenomenon

Search Result 148, Processing Time 0.026 seconds

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines (스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석)

  • Oh, Yun-Ji;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection (초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.

The Phenomenon of the Slag Foaming and the Result of using Various Slag Deforming Agents in the Steelmaking Converter (제강(製鋼) 전로(轉爐) 정연시(精鍊時) 슬래그 폼(Slag Foam)발생(發生) 현상(現像) 및 진정제(鎭靜劑) 종류(種類)에 따른 사용효과(使用效果))

  • Chun, Sang-Ho;Song, Choong-Ok;Ban, Bong-Chan
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.18-23
    • /
    • 2006
  • Foaming of slag is a thermodynamically unstable phenomenon and has significant effects in iron and steelmaking processes. For better recycling method of pulp sludge, the application as an defoaming agent during steelmaking process was adopted and tested. The forming machine has been modified in order to produce the briquettes, which are made of pulp sludge and slag with different weight ratio. Influencing factors on the foaming phenomena have been studied and tested for better understanding of foaming phenomena. Experiments were carried out with $CaO-FeO-SiO_2$ based slags with Ar gas injection and addition of coke particles. The slag basicity and (%FeO) contents adapted as major factors to treasure foaming tendency of the slag system. It was found that foam index (${\Sigma}$) gradually decreased as both the basicity and the (FeO) content increase. Four kinds of antifoaming agent such as aluminium dross, cokes, rice bran and pulp sludge with steelmaking slag have been tested in actual process. Aluminium dross was the most effective, and pulp sludge with steelmaking slag also showed the desired results.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

Maintenance and Dynamic Behavior of Advanced Spherical Bearings under Railway Open-Steel-Plate-Girder Bridges (판형교에서 개량된 스페리칼받침의 유지보수 및 동적 거동)

  • Choi, Eun-Soo;Lee, Hee-Up;Lee, Seung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.165-175
    • /
    • 2008
  • Line type rigid bearings for Open-Steel-Plate-Girder railway bridges have several problems in service, and they are unstable structurally. A series of lateral resistance tests were performed for a retrieved line type bearing. A spherical bearing with advanced maintenance-capability and a device to resist the up-lift was developed and replaced the existing ones. An experiment of maintenance for a new spherical bearing under real Open-Steel-Plate-Girder bridge was conducted and their good maintenance performance was proved. Also, a test against up-lift was performed for the bearing. The dynamic behavior of the bridge was measured and analyzed for the two cases of the existing and replaced bearings. Therefore, the suitability of the new spherical bearings on the railway bridge was improved.

Analysis of Turbulence on a Merge Influence Section in Uninterrupted Facility (연속류도로 합류영향구간 교통류 난류현상 분석)

  • Kim, Hyun-Sang;Do, Tcheol-Woong
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.217-228
    • /
    • 2009
  • Sections under the influence of merging in an uninterrupted facility create irregular interaction between vehicles, such as lane change, speed acceleration and deceleration because of the merging of ramp traffic flows which have traffic characteristics different from those of the main line. This causes a confused traffic flow phenomenon(turbulence), which is considered an unstable traffic characteristic between various continuous points in consideration of v conditions. In this study, in merge influence sections, detectors by lane-point were installed to create time and space-series -traffic data. The least significant difference(LSD), as the criteria for discriminating a significant speed change between points, was calculated to examine the turbulence. As a result, turbulence in merge influence section was found to change the zones of such occurrence and the seriousness levels according to traffic condition. Thus, the maximum merge influence section due to the turbulence was created in the traffic condition before congestion when traffic increases. According to characteristics of changes in speed, merge influence section was divided into upstream 100m$\sim$downstream 100m(a section of speed reduction), and downstream 100m$\sim$downstream 400m(a section of reduced speed maintenance and acceleration).

  • PDF

Mechanism of Surface Film Formation on Graphite Negative Electrodes and Its Correlation with Electrolyte in Lithium Secondary Batteries (리튬 이차전지의 흑연 음극 표면피막 생성기구와 전해질과의 상관성)

  • Jeong, Soon-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.19-33
    • /
    • 2010
  • The surface film, which is formed on graphite negative electrodes during the initial charging, is a key component in lithium secondary batteries. The battery reactions are strongly affected by the nature of the surface film. It is thus very important to understand the physicochemical properties of the surface film. On the other hand, the surface film formation is a very complicated interfacial phenomenon occurring at the graphite/electrolyte interface. In studies on electrode surfaces in lithium secondary batteries, in-situ experimental techniques are very important because the surface film is highly reactive and unstable in the air. In this respect electrochemical atomic force microscopy (ECAFM) is a useful tool for direct visualizing electrode/solution interfaces at which various electrochemical reactions occur under potential control. In the present review, mechanism of surface film formation and its correlation with electrolyte are summarized on the basis of in-situ ECAFM studies for understanding of the nature of the surface film on graphite negative electrodes.

A Study on Subcritical Instability of Axisymmetric Supersonic inlet (축대칭 초음속 흡입구의 아임계 불안정성 연구)

  • Shin, Phil-Kwon;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.29-36
    • /
    • 2004
  • Supersonic inlet buzz can be defined as unstable subcritical operation associated with fluctuating internal pressures and a shock pattern oscillating about the inlet entrance. The flow pulsations could result in flameout in the combustor or even structural damage to the engine. An experimental study was conducted to investigate the phenomenon of supersonic inlet buzz on axisymmetric, external-compression inlet. An inlet model with a cowl lip diameter of 30mm was tested at a free stream Mach number of 2.0. Subcritical instability was investigated by considering the frequency of pressure pulsation and shock wave structure at the inlet entrance. The results obtained show that total pressure recovery ratios were varied from 0.42 to 0.78, and capture area ratio from 0.34 to 0.98. The frequency of the subcritical flow increased with decrease in capture area ratios. Frequency was measured at $224{\sim}240Hz$.

Development of a Vibration Diagnostic System for Steam Turbine Generators (스팀터빈 발전기 진동진단 시스템 개발)

  • Lee, An-Sung;Hong, Seong-Wook;Kim, Ho-Jong;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.543-553
    • /
    • 1995
  • Modern steam turbine generators are being built as a higher power and larger system, experiencing more frequent starts and stops of operation due to a constant change of power demands. Hence, they are inevitably more vulnerable to various vibrations, and more often exposed to the danger of sudden vibration accidents than ever before. Even under the circumstances, in order to secure the system reliability of steampower plants and there by to supply safely the public electricity, it is important to prevent a sudden vibration accident in one hand and even when it happens, to raise an operating efficiency of the plants throught swift and precise treatments in the other. In this study, an interactive vibration diagnostic system has been developed to make the on-site vibration diagnosis of steam turbine generators possible and convenient, utilizing a note-book PC. For this purpose, at first the principal vibration phenomena, such as various unbalance and unstable vibrations as well as rubbing, misalignment, and shaft crack vibrations, have been systematically classified as grouped parameters of vibration frequencies, amplitudes, phases, rotating speeds at the time of accident, and operating conditions or condition changes. A new complex vibration diagnostic table has been constructed from the causal relations between the characteristic parameters and the principal vibration phenomena. Then, the diagnostic system has been developed to screen and issue the corresponding vibration phenomena by assigning to each user-selected combination of characteristic parameters a unique characteristic vector and comparing this vector with a diagnostic vector of each vibration phenomenon based on the constructed diagnostic table. Moreover, the diagnostic system has a logic whose diagnosis may be performed successfully by inputing only some of the corresponding characteristic parameters without having to input all the parameters. The developed diagnostic system has been applied to perform the diagnosis of several real cases of steam turbine vibration accidents. And the results have been quite satisfactory.

  • PDF