• Title/Summary/Keyword: Unstable Motion

Search Result 225, Processing Time 0.024 seconds

Operative Treatment with Intramedullary Fibular Strut Allograft for Osteoporotic Proximal Humerus Fracture

  • Chun, Yong-Min;Lee, Wonyong
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • Background: The purpose of this study was to investigate the clinical and radiological outcomes of locking plate fixation with fibular strut allograft to manage unstable osteoporotic proximal humerus fractures. Methods: We retrospectively reviewed 15 patients who underwent open reduction and locking plate fixation with fibular strut allograft for osteoporotic proximal humerus fracture between July 2011 and June 2015. For functional evaluation, we evaluated visual analogue scale (VAS) pain score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) shoulder score, and active range of motion. For radiological evaluation, shoulder true anteroposterior (AP) and AP in $20^{\circ}$ external rotation, as well as the axillary view were taken at two weeks, six weeks, three months, six months, and one year. And the neck-shaft angle was measured on the AP view in $20^{\circ}$ external rotation view. Results: At the one-year follow-up, mean VAS pain score and all shoulder scores, including ASES score and UCLA shoulder score, exhibited satisfactory clinical outcomes. All patients obtained bone union between three and six months post-procedure. Moreover, the mean immediate postoperative neck-shaft angle was $138^{\circ}{\pm}4^{\circ}$, and at one-year follow-up, the neck shaft angle was $137^{\circ}{\pm}5^{\circ}$. There was no significant difference between the preoperative and postoperative values (p=0.105). Conclusions: For the unstable two-part and three-part osteoporotic proximal humerus fractures with medial calcar comminution, the use of fibular strut allograft with locking plate fixation was effective in maintaining the initial status of reduction and exhibiting the satisfactory functional and radiological outcomes.

Identification of Linear and Nonlinear Dynamic Stability Characteristics of a Medium-size High-speed Turbocharger Rotor Supported by 3-lobe Bearings (3-로브 베어링으로 지지된 중형 고속 터보차저 로터의 선형 및 비선형 동적 안정성 특성 규명)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.562-569
    • /
    • 2011
  • In this study linear and nonlinear dynamic stability characteristics of a medium-size high-speed turbocharger, whose rotor is supported by two 3-lobe journal bearings, are analyzed to evaluate and identify the effects of its bearing design variables. The rotor has the rated speed of 40,500 rpm and maximum continuous speed of 45,000 rpm. At first, utilizing the linear stability analysis method, bearing designs of yielding stable or unstable LogDecs as small as possible are searched by manipulating with machined bearing clearances and preloads. As next, utilizing the nonlinear analysis method, limit cycles of the rotor responses at the rated and maximum continuous speeds are simulated to check their acceptances. Results have shown that for the turbocharger rotor-bearing system considered, the 3-lobe journal bearing design with a smaller machined clearance and a larger preload are preferred for the stable rotor responses. More importantly, since there exists a good correlation between the linear and nonlinear stability analysis results, it is concluded that firstly the linear stability analysis method may be applied to screen quickly the ranges of bearing designs for stable or least unstable solutions and then, lastly the nonlinear stability analysis method may be deployed to check an absolute motion stability in terms of the limit cycle.

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.

A decade of treating traumatic sternal fractures in a single-center experience in Korea: a retrospective cohort study

  • Na Hyeon Lee;Seon Hee Kim;Jae Hun Kim;Ho Hyun Kim;Sang Bong Lee;Chan Ik Park;Gil Hwan Kim;Dong Yeon Ryu;Sun Hyun Kim
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.362-368
    • /
    • 2023
  • Purpose: Clinical reports on treatment outcomes of sternal fractures are lacking. This study details the clinical features, treatment approaches, and outcomes related to traumatic sternal fractures over a 10-year period at a single institution. Methods: A retrospective cohort study was conducted of patients admitted to a regional trauma center between January 2012 and December 2021. Among 7,918 patients with chest injuries, 266 were diagnosed with traumatic sternal fractures. Patient data were collected, including demographics, injury mechanisms, severity, associated injuries, sternal fracture characteristics, hospital stay duration, mortality, respiratory complications, and surgical details. Surgical indications encompassed emergency cases involving intrathoracic injuries, unstable fractures, severe dislocations, flail chest, malunion, and persistent high-grade pain. Results: Of 266 patients with traumatic sternal fractures, 260 were included; 98 underwent surgical treatment for sternal fractures, while 162 were managed conservatively. Surgical indications ranged from intrathoracic organ or blood vessel injuries necessitating thoracotomy to unstable fractures with severe dislocations. Factors influencing surgical treatment included flail motion and rib fracture. The median length of intensive care unit stay was 5.4 days (interquartile range [IQR], 1.5-18.0 days) for the nonsurgery group and 8.6 days (IQR, 3.3-23.6 days) for the surgery group. The median length of hospital stay was 20.9 days (IQR, 9.3-48.3 days) for the nonsurgery group and 27.5 days (IQR, 17.0 to 58.0 days) for the surgery group. The between-group differences were not statistically significant. Surgical interventions were successful, with stable bone union and minimal complications. Flail motion in the presence of rib fracture was a crucial consideration for surgical intervention. Conclusions: Surgical treatment recommendations for sternal fractures vary based on flail chest presence, displacement degree, and rib fracture. Surgery is recommended for patients with offset-type sternal fractures with rib and segmental sternal fractures. Surgical intervention led to stable bone union and minimal complications.

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Comparison of Kinematic Factors between Old and Young People during Walking on Level and Uneven Inclined Surfaces (평지와 고르지 않은 지면 경사로 보행 시 고령자와 젊은 성인의 운동학적 요인 비교)

  • Choi, Jin-Seung;Kang, Dong-Won;Mun, Kyung-Ryul;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The purpose of this study was to investigate the changes in walking pattern of the elderly during inclined walkway with uneven surfaces and level walking. 10 young($26.3{\pm}1.3$ years, $174.3{\pm}5.3\;cm$, $69.5{\pm}9.5\;kg$) and 13 elderly($72.4{\pm}5.2$ years, $164.5{\pm}5.4\;cm$, $66.1{\pm}9.6\;kg$) male subjects were participated in the experiment. Experiment consisted of 2 walking conditions: horizontal and inclined walkway with uneven surfaces. 3D motion capturing system were used to acquire and analyze walking motion data with sampling frequency of 120 Hz. To compare differences between conditions, kinematic variables(walking speed, stance-swing ratio, hip joint angle, knee joint angle, ankle joint angle, pelvic rotation angle) were used. Results showed that there were some changes of elderly walking pattern in inclined walkway with uneven surfaces: hip joint(adduction and rotation) and pelvic movement pattern. These changes by inclination and surface may affect gait pattern of young subjects as well as elderly subjects. However, in case of elderly it revealed more unstable gait than the young. Further study is necessary to clarify changes in walking pattern for elderly by considering various gait variables including head movement and various walkway conditions.

Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model (클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출)

  • Park, Jong-Hyun;Lee, Gee-Sang;Toan, Nguyen Dinh;Cho, Wan-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • A real-time detection and tracking of moving objects in video sequences is very important for smart surveillance systems. In this paper, we propose a novel algorithm for the detection of moving objects that is the entropy-based adaptive Gaussian mixture model (AGMM). First, the increment of entropy generally means the increment of complexity, and objects in unstable conditions cause higher entropy variations. Hence, if we apply these properties to the motion segmentation, pixels with large changes in entropy in moments have a higher chance in belonging to moving objects. Therefore, we apply the Clausius entropy theory to convert the pixel value in an image domain into the amount of energy change in an entropy domain. Second, we use an adaptive background subtraction method to detect moving objects. This models entropy variations from backgrounds as a mixture of Gaussians. Experiment results demonstrate that our method can detect motion object effectively and reliably.

On the Study of Nonlinear Normal Mode Vibration via Poincare Map and Integral of Motion (푸앙카레 사상과 운동적분를 이용한 비선형 정규모드 진동의 연구)

  • Rhee, Huinam
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.196-205
    • /
    • 1999
  • The existence. bifurcation. and the orbital stability of periodic motions, which is called nonlinear normal mode, in a nonlinear dual mass Hamiltonian system. which has 6th order homogeneous polynomial as a nonlinear term. are studied in this paper. By direct integration of the equations of motion. Poincare Map. which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space. is obtained. And via the Birkhoff-Gustavson canonical transformation, the analytic expression of the invariant curves in the Poincare Map is derived for small value of energy. It is found that the nonlinear system. which is considered in this paper. has 2 or 4 nonlinear normal modes depending on the value of nonlinear parameter. The Poincare Map clearly shows that the bifurcation modes are stable while the mode from which they bifurcated out changes from stable to unstable.

  • PDF

Robust Walking Algorithm of Biped Robot on Uneven Terrain (비평탄 지형에서 이족로봇의 강인한 보행 알고리즘)

  • Lee, Bo-Hoon;Park, Jong-Han;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • Biped robot with high DOF has instability in mechanism. Therefore, it is important to guarantee walking stability of biped robot. Biped robot can stably walk on the flat ground using static walking patterns. However, walking stability of robot becomes increasingly worse on the uneven terrain. In the paper, we propose a robust walking algorithm of biped robot with motion stabilization to solve the problem The proposed algorithm was designed to stabilize walking motions based on the inclination of robot body using a gyro sensor and a accelerometer equipped in the center of the upper body. If unstable motions are recognized, angles of each joints are modified to increase stability by using compensation of angles of lower legs. The experimental results show that biped robot performs stable walking on the uneven terrain.

Experimental Study on Propulsion Characteristic of Autonomous Intervention ROV (자율작업용 원격운용잠수정의 추진 특성에 관한 실험 연구)

  • Yeu, Taekyeong;Lee, Yoongeon;Chae, Junbo;Yoon, Sukmin;Lee, Yeongjun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.454-461
    • /
    • 2019
  • In autonomous interventions using an underwater vehicle with a manipulator, grasping based on target detection and recognition is one of the core technologies. To complete an autonomous grasping task, the vehicle body approaches the target closely and then holds it through operating the end-effector of the manipulator, while the vehicle maintains its position and attitude without unstable motion. For vehicle motion control, it is very important to identify the hydrodynamic parameters of the underwater vehicle, including the propulsion force. This study examined the propulsion characteristics of the autonomous intervention ROV developed by KRISO, because there is a difference between the real exerted force and the expected force. First, the mapping between the input signal and thrusting force for each underwater thruster was obtained through a water tank experiment. Next, the real propulsion forces and moments of the ROV exerted by thrusting forces were directly measured using an F/T (force/torque) sensor attached to the ROV. Finally, the differences between the measured and expected values were confirmed.