• Title/Summary/Keyword: Unstable Motion

Search Result 225, Processing Time 0.024 seconds

Development of a Noncontacting 6 DOF Micro-Postioner Driven by Magnetic Force-Design, Modeling and Control- (자기력을 이용한 비접촉 6자유도 미소위치결정 기구의 개발-설계, 모델링 및 제어-)

  • Choi, Kee-Bong;Park, Kyi-Hwan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1164-1176
    • /
    • 1996
  • A magnetically levitated micro-positioner is implemented to avoid mechanical friction and increase precision. Since magnetic levitation system is inherently unstable, most concern is focused on a magnetic circuit design to increase the system dynamic stability. For this, the proposed levitation system is constructed by using an antagonistic structure which permits a simple design and robust stability. From the dynamic equations of motion, it is verified that the proposed magnetically levitated system is decoupled in 6 degree-of-freedom motion. Experimental results are presented in terms of time response and accuracy.

An Investigation of Dynamic Stability of Self-Compensating Dynamic Balancer (자기보상 동적균형기의 동적안정성 연구)

  • Lee, Jongkil
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • Self-Compensating Dynamic Balancer (SCDB) is composed of a circular disk with a groove containing spherical balls and a low viscosity damping fluid. To investigate the stability of the motion equations these equations are perturbed and the resulting perturbation equations are analyzed further to determine whether the perturbations grow or decay with dimensionless time. Based on the results of stability investigation, ball positions that result in a balanced system are stable above the critical speed for .betha.' = 3.8. At critical speed the perturbed motion is said to be stable for .betha.' = 23. However, the system is unstable below critical speed in any case of .betha.'.

  • PDF

Flicker Reduction Algorithm using Gamma Correction Parameter (감마보정 요소를 이용한 동영상 플리커 제거 알고리즘)

  • Choi, Heon-Hoi;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.397-400
    • /
    • 2010
  • The changing light condition of scene cause the luminance fluctuation of the captured image sequences. this artifact is called flicker, and would be easily recognized as visually unstable fluctuation. As the flicker degrades the performance of extracting useful information from image sequences, such as motion information or segmentation, it should be correction and linear flicker model. The algorithm model the flicker effects as a linear system with gain and offset parameter and estimates gain parameter with Gamma correction. The flicker reduction is performed by applying these parameters inversely th the ordinal sequences. To show the performance, we test out algorithm th the ground-truth sequences with the artificially added luminance fluctuation and real sequence with object motion.

  • PDF

An Analysis of High School Students' Mental Models on the Plate Boundaries (판의 경계에 대한 고등학생들의 정신모형 분석)

  • Park, Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.111-126
    • /
    • 2009
  • The purpose of this study was to derive the criterions of each type of mental models on the plate boundaries and to investigate high school students' mental models on these concepts. The 11th grade student participants were requested to draw the collisional, convergent, and divergent boundaries and were interviewed individually. The drawings and the data gathered through the interviews were analyzed qualitatively. The mental models on the plate boundaries were classified as 'naive model', 'unstable model', 'causal model', and 'conceptual model'. The criterions for analyzing the mental models were the differentiations of the lithospheric plates and the mantle, the explanations of the motion of the plates and lower mantle, the demonstrations of topographical features of the plate boundaries and the causal relationships between the mantle convection and the topographical features. The findings revealed that the students holding 'the naive model' and 'the unstable model' were unable to relate the mantle convection and the three boundaries. In contrast, the students holding 'the causal model' and 'the conceptual model' were able to explain that the mantle convection causes the three boundaries. Also, the types of epistemological belief were different depending on their mental models. Students holding the naive model and the unstable model tended to rely upon the external authorities.

Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing (드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석)

  • Lee, Kyung-Ill;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.

Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration (탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young;Shin, Hyung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up

  • Park, Hun-Ho;Zhang, Ho-Yeol;Cho, Bo-Young;Park, Jeong-Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.285-291
    • /
    • 2009
  • Objective : This study examined the change of range of motion (ROM) at the segments within the dynamic posterior stabilization, segments above and below the system, the clinical course and analyzed the factors influencing them. Methods : This study included a consecutive 27 patients who underwent one-level to three-level dynamic stabilization with Bioflex system at our institute. All of these patients with degenerative disc disease underwent decompressive laminectomy with/without discectomy and dynamic stabilization with Bioflex system at the laminectomy level without fusion. Visual analogue scale (VAS) scores for back and leg pain, whole lumbar lordosis (from L1 to S1), ROMs from preoperative, immediate postoperative, 1.5, 3, 6, 12 months at whole lumbar (from L1 to S1), each instrumented levels, and one segment above and below this instrumentation were evaluated. Results : VAS scores for leg and back pain decreased significantly throughout the whole study period. Whole lumbar lordosis remained within preoperative range, ROM of whole lumbar and instrumented levels showed a significant decrease. ROM of one level upper and lower to the instrumentation increased, but statistically invalid. There were also 5 cases of complications related with the fixation system. Conclusion : Bioflex posterior dynamic stabilization system supports operation-induced unstable, destroyed segments and assists in physiological motion and stabilization at the instrumented level, decrease back and leg pain, maintain preoperative lumbar lordotic angle and reduce ROM of whole lumbar and instrumented segments. Prevention of adjacent segment degeneration and complication rates are something to be reconsidered through longer follow up period.

Debridement Arthroplasty for Post-Traumatic Stiff Elbow (후외상성 주관절 강직에서의 변연 관절 성형술)

  • Rhee Yong-Girl;Kim Hee-Seon;Chun Young-Soo;Cho Young-Lin
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.2
    • /
    • pp.242-249
    • /
    • 1998
  • Stiffness of the elbow joint is relatively common after trauma, ectopic ossification, bum, postoperative scar, and etc. Mild flexion deformity can be reduced by use of active or passive motion exercise, dynamic sling, hinged distractor device, or turnbuckle orthosis. But these methods have disadvantages of difficulty in gaining acceptable range of motion only with stretching exercise, re-contracture after conservative managements and poor results that flexion contracture remained. The common described operative exposures for treatment of the stiff elbow are anterior, lateral, posterior, and medial approach. Through Anterior, lateral and medial approach each has not access to all compartments of the elbow. But, posterior approach has benefits that access to posterior, medial and lateral aspects of the elbow and as needed, fenestration to the olecranon fossa that produces a communication between the anterior and posterior compartments of the elbow are possible. From June 1991 through April 1997, 11 patients who had posttraumatic stiff elbow, were treated with debridement arthroplasty through the posterior approach. The purpose of this study are to introduce technique of the debridement arthroplasty and to evaluate final outcomes. With regarding to preoperative pain degree, mild degree matches to 3 cases, moderate to 3 cases, and severe to 2 cases. In preoperative motion, flexion was average 85° and extension was 30°. Postoperatively nine patients had got the complete relief of pain and two patients continued to have mild pain intermittentely. Postoperative flexion improved to 127° and extension to 2°, so that elbow flexion had improved by an average of 42° and elbow extension by 28°. On the objective scale all patients had good or excellent results and they all felt that they were improved by operation. Debridement arthroplasty is one of excellent procedures for the intractable stiff elbow if it is not unstable or it has not incongrous. But it need a meticulous operative technique and a well-programmed rehabilitation.

  • PDF

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.