• 제목/요약/키워드: Unstable

검색결과 4,515건 처리시간 0.035초

고불안정 조건에서의 3차원 데토네이션 파면 구조 해석 연구 (Numerical Study of Three Dimensional Detonation Waves Structure in Highly Unstable Mode.)

  • 조덕래;원수희;신재렬;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.359-362
    • /
    • 2012
  • The results are shown highly unstable mode's detonation dynamics by compared with weakly unstable mode. And we investigate the difference and similar features of 2D and 3D results. By using PSD via FFT, the effects of pre-exponential factor difference and of unstable mode were investigated in this study. The result of PSD is shown pulsed features in weakly unstable mode, but noselike in highly unstable mode. By compared between Sheliren image and overlaid slice image, the irregular feature of detonation waves structure was discussed in highly unstable mode.

  • PDF

차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색 (Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique)

  • 김재열
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF

Effective Detection Method of Unstable Acoustic Signature Generated from Ship Radiated Noise

  • Yoon, Jong-Rak;Ro, Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권1E호
    • /
    • pp.25-30
    • /
    • 2001
  • The unstable signature that is defined as frequency change with respect to the time or frequency modulation, is caused by the external loading variation in specific machinery component and Doppler shift etc. In this study, we analyze the generation mechanism of the unstable signature and apply the Extended Kalman filter (EKF) algorithm for its detection. The performance of Extended Kalman Filter is examined for numerical and measured signals and the results show its validity for unstable signature detection.

  • PDF

안정한 지지면과 불안정한 지지면에서의 자세에 따른 체간안정화 근육 활성도 비교 (The Difference of Trunk Muscle Activities In Trunk Stabilization on the Stable and Unstable Surface.)

  • 김수현
    • 대한통합의학회지
    • /
    • 제6권2호
    • /
    • pp.37-44
    • /
    • 2018
  • Purpose : The aim of this study is to compare the trunk muscle activities in trunk stabilization on the stable and unstable supporting surfaces using by sEMG. Methods : The subjects of this study include seventeen male. We measured sEMG activities of rectus abdominis and erector spine in subjects during trunk stabilization such as plank exercise, quadruped position, quadruped position with rising hand and foot on the stable and unstable surface. Results : sEMG activities in plank exercise was significantly higher in left rectus abdominis and left erector spine on unstable surface then stable surface (p<.05). sEMG activities of left rectus abdominis and left erector spine in quadruped position was significantly higher in unstable surface than stable surface (p<.05). In comparison with posture, Plank exercise showed a significant difference increase other postures (p<.05). Conclusion : sEMG activities of muscle in trunk stabilization was significantly higher in unstable surface than stable surface and plank exercise. So, we suggest that trunk stabilization on the unstable supporting surface and plank exercise were more effective method than stable surface to improve trunk muscles activities.

불안정지지면 훈련에 따른 만성 뇌졸중 환자의 다리 근활성도와 동요속도의 상관성 연구 (Study on the Correlation between Muscle Activity of Lower Extremity and Sway Speed of Chronic Stroke Patients according to Unstable Surface Training)

  • 서흥원;김명철
    • 대한통합의학회지
    • /
    • 제1권4호
    • /
    • pp.75-83
    • /
    • 2013
  • Purpose : This research was conducted to see the correlation between sway speed and muscle activity for lower extremity of stroke patients through unstable surface training. Methods : A total of 60 patients were randomly divided unstable surface group (30 peoples) and stable surface group (30 people). Then they were asked to carry out the same exercise program for 6 weeks. The unstable surface group and stable surface group performed the exercise program on the balance mat and on the hard wood block. We checked the changes of sway speed and the changes in muscle activity for lower extremity. Results : The unstable surface group displayed significantly reduced sway speed, and improved muscle activity of lower extremity. There were significant correlation between change amount of muscle activity and sway velocity in Gastrocnemius, Biceps femoris during unstable surface training(r=.373, p<.05)(r=.369, p<.05). And there were not show significant differences during stable surface training. Conclusion : Judging from this, we can have knowledge that the correlation between increase of muscle activity and decrease of sway velocity for Gastrocnemius, Biceps femoris in the unstable surface training.

계단 보행 시 불안정성 신발 착용에 따른 슬관절 부하에 대한 연구 (A Study on Changes in Knee Joint Loading during Stair Gait with Unstable Shoes)

  • 박지원;김윤진
    • The Journal of Korean Physical Therapy
    • /
    • 제26권2호
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: The purpose of this study is to compare kinematics and kinetics on the knee joint between stair gait with unstable shoes and barefoot in healthy adult women. Methods: Seventeen healthy adult women were recruited for this study. The subjects performed stair ascent and descent with unstable shoes and barefoot. The experiment was repeated three times for each stair gait with unstable shoes and barefoot. Measurement and analysis of the movements of the knee joint were performed using a three-dimensional analysis system. Results: Statistically significant differences in the knee muscle force of semimembranosus, biceps femoris-long head, biceps femoris-short head and sartorius, patellar ligament, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Statistically significant differences in the knee muscle force of sartorius, rectus femoris, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair descent. Statistically significant differences in the knee flexor moment of semitendinosus, biceps femoris-long head, biceps femoris-short head, sartorius, rectus femoris, vastus intermedialis, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Conclusion: Therefore, wearing unstable shoes during stair gait in daily life is considered to influence knee joint kinematics and kinetics due to the unstable shoes, and thus suggest the possibility that reducing the risks of pain, and knee osteoarthritis, stabilizing the knee joint caused by changes in the loading of the knee joint.

불안정한 공정에 대한 온라인 공정 확인 및 자동 조절 (On-line process identification and autotuning for unstable processes)

  • 곽희진;성수환;이인범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.832-835
    • /
    • 1997
  • In this paper, we first analyze the structural limitation of the conventional PID controller in controlling unstable processes through mathematical proof. To overcome this structural limitation, we add an internal feedback loop to the PID controller. Secondly, we obtain conditions when unstable processes can be stabilized by a controller through an analytical analysis. Finally, we propose a simple on-line process identification and autotuning method for unstable processes. Many simulation results show that, in spite of its simplicity, the proposed on-line process identification method provides good accuracy in modeling the unstable process and acceptable robustness to measurement noises and disturbances. Also, the proposed autotuner shows good control performances for both servo and regulatory problems.

  • PDF

불안정(不安定) Link 구조물(構造物)의 형태해석(形態解析)에 관(關)한 연구(硏究) (Shape Finding of Unstable Link Structures)

  • 김재열
    • 한국공간구조학회논문집
    • /
    • 제3권2호
    • /
    • pp.101-107
    • /
    • 2003
  • There exists a structural problem for link structures in the unstable state. The primary characteristics of this problem are in the existence of rigid body displacements without strain, and in the possibility of the introduction of prestressing to change an unstable state into a stable state. When we make local linearized incremental equations in order to obtain knowledge about these unstable structures, the determinant of the coefficient matrices is zero, so that we face a numerically unstable situation. This is similar to the situation in the stability problem. To avoid such a difficult situation, in this paper a simple and straightforward method was presented by means of the generalized inverse for the numerical analysis of stability problem.

  • PDF

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF