• Title/Summary/Keyword: Unslotted CSMA/CA

Search Result 3, Processing Time 0.023 seconds

Design and Implementation of UV Flame Detector Module Using Low Power Algorithm of ZigBee (ZigBee Protocol의 저 전력 알고리듬을 이용한 UV Flame Detector의 설계 및 구현)

  • Lee, Young-Jae;Chang, Choong-Won;Rhee, Sang-Yong;Jung, Min-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • Nowadays fires must be detected rapidly Abstract, and by connecting the detector's distribution, sender, transponder, receiver and others can be connected. Mechanical systems are implemented in today's buildings. However, this kind of constructing method has some disadvantages, that is, if fire happens somewhere, we cannot judge where the fires happen, and it is also difficult to judge what extent the fires reach. In order to overcome the disadvantages, in this paper, according to the tendency of combining the Ubiquitous and Intelligent Network, we propose a type of system by using the method of comparing the differences of the existed systems. The proposed system is designed to perceive the fires rapidly and confirm the fire place and fire scale correctly.

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

Performance Analysis of IEEE 802.15.4e Time Slotted Channel Hopping for Low-Rate Wireless Networks

  • Chen, Shuguang;Sun, Tingting;Yuan, Jingjing;Geng, Xiaoyan;Li, Changle;Ullah, Sana;Alnuem, Mohammed Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • The release of IEEE 802.15.4e specification significantly develops IEEE 802.15.4. The most inspiring improvement is the enhancement for medium access control (MAC) sublayer. To study the performance of IEEE 802.15.4e MAC, in this paper we first present an overview of IEEE 802.15.4e and introduce three MAC mechanisms in IEEE 802.15.4e. And the major concern here is the Time Slotted Channel Hopping (TSCH) mode that provides deterministic access and increases network capacity. Then a detailed analytical Markov chain model for TSCH carrier sense multiple access with collision avoidance (CSMA-CA) is presented. Expressions which cover most of the crucial issues in performance analysis such as the packet loss rate, energy consumption, normalized throughput, and average access delay are presented. Finally the performance evaluation for the TSCH mode is given and we make a comprehensive comparison with unslotted CSMA-CA in non-beacon enabled mode of IEEE 802.15.4. It can validate IEEE 802.15.4e network can provide low energy consumption, deterministic access and increase network capacity.