• Title/Summary/Keyword: Unsaturated polyester

Search Result 184, Processing Time 0.021 seconds

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

Strength Characteristics on Sulfuric Acid Corrosion of Recycled PET Polymer Concrete with Different Fillers (충전재 종류에 따른 PET재활용 폴리머콘크리트의 황산부식에 대한 강도 특성)

  • Jo Byung-Wan;Shin Kyung-Chul;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.499-504
    • /
    • 2005
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete Is drawing a strong interest as high-performance materials in the construction industry Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems Posed by plastics and save energy. An objective of this paper is to estimate the damage of sulfuric acid, through investigating recycled PET polymer concrete, immersed at sulfuric acid solution for 84 days. As a result of testing, recycled PET PC, used $CaCO_3$ as filler, makes a problem of appearance and strength if they are exposed for long term at corrosion environment. On the other hand, recycled PET PC, used fly-ash as filler, had less effect on decrease in weight and strength. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

Performance Characteristics of No-Fines Polymer Concrete using Recycled Coarse Aggregate with Binder Contents (결합재의 함량에 따른 순환굵은골재 사용 무세골재 폴리머 콘크리트의 성능 발현 특성)

  • Kim, Do-Heon;Jung, Hyuk-Sang;Kim, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.433-442
    • /
    • 2021
  • In this study, the properties of no-fines polymer concrete with different polymer binder contents were evaluated. The polymer concrete was formulated using a polymeric binder (unsaturated polyester resin), fly ash, and recycled coarse aggregate (60%) and crushed coarse aggregate (40%). The polymeric binder content (4.0-6.0wt.%) was used as an experimental variable because it dramatically affects both the cost-effectiveness and material properties. The results showed that the density, compressive strength, flexural strength both before and after exposure to freezing and thawing increased as the polymer binder content increased, while the absorption, void ratio, permeable voids, coefficient of permeability, and acid resistance (mass loss by acid attack) decreased as the polymeric binder content increased. In particular, even though the void ratio was 18.4% and the water permeability coefficient was 7.3mm/sec, the compressive strength and flexural strength were as high as 38.0MPa and 10.0MPa, respectively, much more significant than those of previous studies. Other properties such as absorption and acid resistance were also found to be excellent. The results appear to be rooted in the increased adhesion of the binder by adding a cross-linking agent and the surface hydrophobicity of the polymer.

Studies on Processing and Keeping Quality of Retort Pouched Foods (5) Preparation and Keeping Quality of Retort Pouched Seasoned Ark Shell (레토르트파우치 식품의 가공 및 품질안정성에 관한 연구 (5) 레토르트파우치 조미피조개제품의 제조 및 품질안정성)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;LEE Tae-Hun;CHUNG Young-Hoon;SHIN Keun-Jin;KIM Woo-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.109-117
    • /
    • 1986
  • For the purpose of obtaining basic data which can be applied to processing of retort pouched shellfishes, retort pouched seasoned ark shell, Anadara broughtonii, was prepared. The frozen ark shell was thawed and seasoned with a mixed seasoning powder prepared with $10.0\%$ of sorbitol, $2.0\%$ of table salt and $0.5\%$ of monosodium glutamate at $5^{\circ}C$ for 10 hours, and then dried at $45^{\circ}C$ for 4 hours. The dried seasoned ark shell was coated with $1.0\%$ sodium alginate solution, dried with cola air blast for 2 hours and then vacuum-packed in the laminated plastic film bag (polyester/casted polypropylene= $12{\mu}m/70{\mu}m,\;15{\times}16cm$), and finally sterilized up to Fo=6.0 in hot water circulating retort at $121^{\circ}C$ for 10 minutes. The major fatty acids of raw ark shell and retort pouched seasoned ark shell products were 16:0, 20:5, 22:6, 18:0 and 18:3, and predominant free amino acids of those were lysine, arginine, glycine, alanine, glutamic acid and leucine. In nucleotides and its related compounds of raw ark shell and retort pouched seasoned ark shell products, the most abundant one was AMP, and total extract-N of those was chiefly consisted of free amino acids, betaine and nucleotide and its related compounds. During the processing procedure such as drying and sterilization, unsaturated fatty acids slightly decreased while saturated fatty acids increased, and total extract-N content decreased about a half. From the results of chemical and microbial experiments during storage, it was concluded that the products could be preserved in a good condition for 100 days at room temperature, and their duality could be improved by the coating treatment of sodium alginate solution.

  • PDF