• Title/Summary/Keyword: Unprotected ecosystem

Search Result 2, Processing Time 0.016 seconds

Effects of Regional SO2 Emission Change due to the Western Development in China on the Deposition of sulfur in East Asia: Analysis Using the RAINS-Asia Model (중국의 서부 대개발에 따른 중국의 아황산가스 배출량과 주 배출 지역의 변화가 동아시아 황 침적량에 미치는 영향: RAINS-Asia 모델을 통한 분석)

  • Yeo M.J;Kim Y.P
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • It is widely accepted that, at present, the SO$_2$ emissions in China are not increasing thanks to the rigorous Chinese government policies. However, with the development of western China, it is possible that the SO$_2$ emission amounts might increase in regional scale. In this study, changes of sulfur deposition pattern and unprotected ecosystem in east Asia due to the sulfur emission pattern changes in China are studied by using the RAINS-Asia model. Five scenarios have been postulated to understand the effects on east Asia, especially, on Korea and Japan. It is found that the increase of SO$_2$ emission in western China might increase the total emission in whole China. And the amount of sulfur deposition from western China on east Asia would be higher than those from eastern China. The deposition amount of sulfur species on Asia is 3.2 Mt when SO$_2$ are emitted from western China only while 2.6 Mt from eastern China only. Generally, Korea and Japan are influenced more by emissions from eastern China than western China. However, if the SO$_2$ emissions from western China increase by 100% while those decrease by 10% in eastern China compared to the base case, the deposition amount of sulfur species on Korea and Japan would be higher than the base case. The fraction of unprotected ecosystem in Korea and Japan for the base case are 50 and 5%. However, if the emissions from western China increase by 100% while those decrease by 10% in eastern China, the fraction of unprotected ecosystem in Korea and Japan would be 52 and 6%.

Are the conservation areas sufficient to conserve endangered plant species in Korea?

  • Kang, Hye-Soon;Shin, Sook-Yung;Whang, Hye-Jin
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.377-389
    • /
    • 2010
  • Understanding the factors relevant to endangerment and the patterns of habitat locations in relation to protected areas is critically important for the conservation of rare species. Although 64 plant species have recently been listed as endangered species in Korea, this information has, until now, not been available, making appropriate management and conservation strategies impossible to devise. Thus, we collected information on potentially threatening factors, as well as information on the locations in which these species were observed. The potentially threatening factors were classified into seven categories. National parks, provincial parks, ecosystem conservation areas, and wetland conservation areas were defined as protected conservation areas. Korean digital elevation model data, along with the maps of all protected areas were combined with the maps of endangered plant species, and analyzed via Geographic Information Systems (GIS). Excluding the category of "small population", endangered plant species in Korea were associated more frequently with extrinsic factors than intrinsic factors. Considering land surface only, all conservation areas in Korea totaled 4.9% of the land, far lower than International Union for Conservation of Nature and Natural Resources (IUCN)'s 10% coverage target. At the species level, 69% of the endangered plant species were detected in conservation areas, mostly in national parks. However, this result demonstrates that 31% of endangered species inhabit areas outside the conservation zones. Furthermore, at the habitat level, a large proportion of endangered species were found to reside in unprotected areas, revealing "gaps" in protected land. In the face of rapid environmental changes such as population increases, urbanization, and climate changes, converting these gap areas to endangered species' habitats, or at least including them in habitat networks, will help to perpetuate the existence of endangered species.