• Title/Summary/Keyword: Unmanned surface vehicle

Search Result 186, Processing Time 0.032 seconds

Mission planning and performance verification of an unmanned surface vehicle using a genetic algorithm

  • Park, Jihoon;Kim, Sukkeun;Noh, Geemoon;Kim, Hyeongmin;Lee, Daewoo;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.575-584
    • /
    • 2021
  • This study contains the process of developing a Mission Planning System (MPS) of an USV that can be applied in real situations and verifying them through HILS. In this study, we set the scenario of a single USV with limited operating time. Since the USV may not perform some missions due to the limited operating time, an objective function was defined to maximize the Mission Achievement Rate (MAR). We used a genetic algorithm to solve the problem model, and proposed a method using a 3-D population. The simulation showed that the probability of deriving the global optimal solution of the mission planning algorithm was 96.6% and the computation time was 1.6 s. Furthermore, USV showed it performs the mission according to the results of the MPS. We expect that the MPS developed in this study can be applied to the real environment where USV performs missions with limited time conditions.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Real-time Localization of An UGV based on Uniform Arc Length Sampling of A 360 Degree Range Sensor (전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치 추정)

  • Park, Soon-Yong;Choi, Sung-In
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.114-122
    • /
    • 2011
  • We propose an automatic localization technique based on Uniform Arc Length Sampling (UALS) of 360 degree range sensor data. The proposed method samples 3D points from dense a point-cloud which is acquired by the sensor, registers the sampled points to a digital surface model(DSM) in real-time, and determines the location of an Unmanned Ground Vehicle(UGV). To reduce the sampling and registration time of a sequence of dense range data, 3D range points are sampled uniformly in terms of ground sample distance. Using the proposed method, we can reduce the number of 3D points while maintaining their uniformity over range data. We compare the registration speed and accuracy of the proposed method with a conventional sample method. Through several experiments by changing the number of sampling points, we analyze the speed and accuracy of the proposed method.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

A Study on the Effective Scanning Trajectory using Manipulator for Underground Object Detection (매니퓰레이터를 이용한 지하 매설물 탐지의 효율적 탐지경로에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This paper shows an effective scanning trajectory for a mine detection device that is one of the mission equipments of unmanned ground vehicle. The mine detection device is composed of a mine-detection sensor, and a 4 DOF manipulator enabling sensor position control. There are three modes that manage the mine detection device: passive, semi-automatic, and automatic. The automatic mode is used the most. This paper suggests a scanning method that makes shape of 8. This method prevents missing target area and enhances scanning speed when the mine detection device scans the ground surface in automatic mode. The suggested method is verified by simulations and experiments.

Numerical Prediction of Aviation Fuel Temperatures in Unmanned Air Vehicles

  • Baek, Nak-Gon;Lim, Jin-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • This paper performs numerical prediction of fuel temperature in the fuel tanks of unmanned air vehicles for both ground static non-operating and in flight transient conditions. The calculation is carried out using a modified Dufort-Frankel scheme. For this calculation, it is assumed that a non-operating vehicle on the ground is subjected to repeating daily cycles of ambient temperature with solar radiation and wind under 1%, with a 20% probability of hot day conditions. The energy conservation equation is used as the governing equation to calculate heat transfer between the fuel tank surface and the ambient environment. Results of the present analysis may be used as the estimated initial values of fuel temperatures in a vehicle's fuel tank for the purpose of analyzing transient fuel temperatures during various flight missions. This research also demonstrates that the fuel temperature of the front tank is higher than that of the rear tank, and that the difference between the two temperatures increases in the later phases of flight due to the consumption of fuel.

Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea (연근해 양식장 주변 적조 모니터링을 위한 무인항공영상 적용 연구)

  • Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Red tide, causes aquaculture industry the damages in Korea every summer, was usually detected by using satellite, aquaculture information was difficult to detect by using satellite. Therefore, we suggests the method for detecting the red tide using the coastal observation and the product from the unmanned aerial Vehicle. As a result, we obtained the high resolution unmanned aerial Vehicle images, detected the red tide by using the unsupervised classification from the true color images and the simple algorithm from the RGB color images. Compared the previous color images, unmanned aerial Vehicle images were clearly classified the ocean color, we were able to identify the red tide distribution in sea surface. These methods were determined to accurately monitor the red tide distribution on the aquaculture fields in the coastal waters where is established the aquaculture.

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Emergency Mode Algorithm Considering Remote Operation/Control and Autonomous Level of Unmanned Surface Vehicle (무인수상정에서의 원격운용통제 및 자율수준을 고려한 비상모드 알고리즘)

  • Youn, Jong-Taek;Kim, Yongi;Baik, Jae Woong;Lim, Jae Hyun;Yu, Chan-Woo;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.319-330
    • /
    • 2017
  • In remote USV (Unmanned Surface Vehicle) maritime operation, the remote operation and control technic and autonomous control technic is required and the emergency mode algorithm is needed certainly for sailing and accomplishing various surveillance, reconnaissance, and underwater search missions of USV. In this paper, we review the countermeasures in emergency situation of the existing USV system (Barracuda) and propose the emergency mode algorithm considering the operation and control, and autonomous control level for the stable USV operation in case of emergency. We analyzed the autonomous control level in view of the mission complexity and environmental difficulty, and human interface, and verified the performance of the autonomous control level when we apply four emergency mode algorithms. It is expected that more stable and reliable operation and cotrol are possible if the proposed algorithm is applied to the environments requiring the various multi-mission USV sailing and mission achievement.