• Title/Summary/Keyword: Unmanned reactor

Search Result 12, Processing Time 0.024 seconds

Conceptual design of a MW heat pipe reactor

  • Yunqin Wu;Youqi Zheng;Qichang Chen;Jinming Li;Xianan Du;Yongping Wang;Yushan Tao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1116-1123
    • /
    • 2024
  • -In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

DESIGN OF DELAY-TOLERANT CONTROLLER FOR REMOTE CONTROL OF NUCLEAR REACTOR POWER

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • One of main concepts involved in regional small nuclear reactors is unmanned remote control. Internet-based virtual private networks provide environments for the remote monitoring and control of geographically-dispersed systems, and with the advances in communication technologies, the potential of networks for real time control and automation becomes enormous. However, networked control has some problems. The most critical is delay in signal transmission, which degrades system stability and performance. Therefore, a networked control system should be designed to account for delay. This paper proposes some design approaches for a delay-tolerant system that can guarantee predetermined stability margins and performance. To accomplish this, the reactor plant is modeled with consideration of uncertainties. With this model, three kinds of controllers are developed using different methods. The designed systems are compared with respect to stability and performance, and a second-order controller designed using the table lookup method was found to give the most satisfactory results.

Performance Evaluation of Hydrogen Generator for Fuel Cell Unmanned Aircraft (연료전지 무인기 탑재용 수소발생기의 성능평가)

  • Park, Dae-Il;Kim, Sung-Uk;Kim, Dong-Min;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.627-633
    • /
    • 2011
  • Performance of a hydrogen generator for a fuel cell unmanned aircraft was evaluated as the change of temperature environment. Sodium borohydride ($NaBH_4$) was used as a hydrogen source due to its high hydrogen content and good storability. The hydrogen gas was generated by the hydrolysis reaction using a catalytic reactor. Reaction chambers were set up with the range of temperatures from -20 to $60^{\circ}C$. The hydrogen generation rate and temperatures changes of reactor and separator were measured at the $NaBH_4$ concentrations of 20 and 25wt.%. As a result, the hydrogen generation rate was decreased as the repeated reaction cycles. It showed that the hydrogen generation rate was stable at low temperature, while at high temperature the hydrogen generation rate was rapidly decreased. The performance degradation was mainly caused by the catalyst loss and $NaBO_2$ deposition on the catalyst surface.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

Power Management of Fuel Cell Propulsion System for Unmanned Aerial Vehicles (무인기용 연료전지 추진 시스템의 동력 관리)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.13-16
    • /
    • 2007
  • Fuel cell was used as a propulsion system for unmanned aerial vehicles (UAV) in the present study. Fuel cell propulsion system are an ideal alternative power source with high energy density for high-endurance UAV. Fuel cell power system provides UAV up to five times the energy densiη of existing batteries. Sodium borohydride, stored in liquid state, was selected as a hydrogen source. Hydrogen generation system consists of catalytic reactor, pump, fuel cartridge, and separator. Hybrid power management system (PMS) between fuel cell and lithium-polymer ba야ery was developed. Motor, pump, and fans, operated on battery power controlled by feedback signals of fuel cell system. Battery was recharged by surpuls powr of fuel cell.

  • PDF

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF

Knowledge-Based Unmanned Automation and Control Systems for the Wastewater Treatment Processes (하.폐수 처리장의 원격 모니터링 및 지식 기반 무인 자동화 시스템)

  • Bae, Hyeon;Jung, Jae-Ryong;Seo, Hyun-Yong;Kim, Sung-Shin;Kim, Chang-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.56-59
    • /
    • 2001
  • In this paper, unmaned fully automation systems are applied for the CSTR(Continuously Stirred Tank Reactor) and, SBR (Sequencing Batch Reactor) wastewater treatment pilot plant. This plant is constructed in the country side which is little far from a main city. So networks and wireless modules are employed for the data transmission. The SBR plant has a local control and monitoring system which is contained communication parts which consist of one ADSL (Asymmetric Digital Subscriber Line) network and one CDMA (Code Division Multiple Access) module. Remote control and monitoring systems are constructed at a laboratory in a metropolis.

  • PDF

Knowledge-Based Unmanned Automation and Control Systems for the Wastewater Treatment Processes (하.폐수 처리장의 원격 모니터링 및 지식 기반 무인 자동화 시스템)

  • Bae, Hyeon;Jung, Jae-Ryong;Seo, Hyun-Yong;Kim, Sung-Shin;Kim, Chang-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.844-848
    • /
    • 2001
  • This paper introduces unmaned fully automation systems, which are applied for the CSTR(Continuously Stirred Tank Reactor) and SBR (Sequencing Batch Reactor) wastewater treatment system. The pilot plant is constructed in the country side which is little far from a main city. So networks and wireless modules are employed for the data transmission. The SBR plant has a local control and the remote monitoring system which is contained communication parts which consist of ADSL (Asymmetric Digital Subscriber Line) network and CDMA (Code Division Multiple Access) Wireless module. Remote control and monitoring systems are constructed at laboratory in a metropolis.

  • PDF

Study on Pressurized Diesel Reforming System for Polymer Electrolyte Membrane Fuel Cell in Underwater Environment (수중 환경에서 고분자 전해질 연료전지(PEMFC) 공급용 수소 생산을 위한 가압 디젤 개질시스템에 관한 연구)

  • Lee, Kwangho;Han, Gwangwoo;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.528-535
    • /
    • 2017
  • Fuel cells have been spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen which is the fuel of fuel cell can be obtained from a number of sources. Hydrogen source for operating the polymer electrolyte membrane fuel cell(PEMFC) in the current underwater environment, such as a submarine and unmanned underwater vehicles are currently from the metal hydride cylinder. However, metal hydride has many limitations for using hydrogen carrier, such as large volume, long charging time, limited storage capacity. To solve these problems, we suggest diesel reformer for hydrogen supply source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC requires a large volume and complex CO removal system for lowering the CO level to less than 10 ppm. In addition, because the preferential oxidation(PROX) reaction is the strong exothermic reaction, cooling load is required. By changing this PROX reactor to hydrogen separation membrane, the problem from PROX reactor can be solved. This is because hydrogen separation membranes are small and permeable to pure hydrogen. In this study, we conducted the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen separation membrane application. Then, the hydrogen permeation experiments were performed using a Pd alloy membrane for the reformate gas.