• Title/Summary/Keyword: Unmanned aircraft systems

Search Result 107, Processing Time 0.028 seconds

On an Air-To-Sea Guided Bomb

  • Takano, Hiroyuki;Baba, Yoriaki;Takao, Kichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.462-467
    • /
    • 1993
  • Even nowadays ships on the sea are important strategic base for aircraft and missiles. Thus we have been studying an unmanned attack system against ships recently. We experienced severa problems when this system was simulated on the computer. In this paper, problems and solutions of an Air-To-Sea Guided Bomb for this system are presented.

  • PDF

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF

Ground Test & Evaluation of an Unmanned Aerial Vehicle

  • Kim, Jinhyoung;Jinyoung Suk;Kim, Ilsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47.6-47
    • /
    • 2002
  • UAV(Unmanned Aerial Vehicle) has become one of the most popular military/commercial aerial robots in the new millenium. In spite of all the advantages that UAVs inherently have, it is not an easy job to develop a UAV because it requires very systematic and complete approaches in full development envelop. The ground test & evaluation phase has the utmost importance in the sense that a well developed system can be best verified on the ground. In addition, many of the aircraft crashes in the flight tests were resulted from the incomplete development procedure. In this research, a verification procedure of the whole airborne integrated system was conducted including the flight management sys...

  • PDF

A Study on Performance Comparison of COTS Operating Systems for a Mission Computer Using UAV Collision Avoidance Algorithm (무인기 충돌회피 알고리즘을 이용한 임무컴퓨터용 상용기성품 운영체계 성능 비교에 대한 연구)

  • Yang, Jun-Mo;Jeon, Yu-Ji;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.6-11
    • /
    • 2016
  • There has been an increase in the number of researches on the segment for commercialization after developing avionics systems. In this paper, we have applied a commercial off-the-shelf(COTS) operating systems in an aircraft mission computer. We used UAV collision avoidance algorithms to compare the performance of COTS operating systems. The UAV collision avoidance algorithms were tested on different operating systems to compare the performances of the operating systems. The measured parameters are memory usage and processing time. We have verified that the UAV collision avoidance algorithms worked successfully and compared the performance of each operating system.

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Design of Common DLI Message Module based on API for the System based on Construction of the Korean Unmanned Aerial Vehicle Interface Protocol (한국형 무인항공기 연동 프로토콜 기반 시스템 구축을 위한 API 기반 공통 DLI 메시지 모듈 설계)

  • Taewon Kim;Sinjoo Lee;Dongho, Lee;Younggon, Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.25-38
    • /
    • 2022
  • Recently, it is reported that the Korean Unmanned Aerial Vehicle (UAV) interface protocol (K-4586) based on STANAG-4586 is being developed to secure interoperability between UAVs. The core elements of the K-4586-based Unmanned Aircraft System (UAS) are the Core UAV Control System (CUCS), Vehicle Specific Module (VSM), Data Link Interface (DLI), and C4I systems. In UAS based on K-4586, the DLI function for transmitting and receiving messages to link UAVs is included in VSM and CUCS respectively. The Generator/Analyzer (G/A) tool is an apparatus that is developed for protocol conformance verification for VSM and CUCS, and G/A tools with DLI message transmitting and receiving should be developed separately. Core applications (VSM, CUCS, DLI) and G/A tools based on K-4586 may be developed independently depending on the developers. If the DLI message modules are different for each developer, the scope and results of protocol conformance verification will be dissimilar, and some problems may happen during system integration. In this study, common DLI message module based on the API was designed to provide the DLI message transmitting and receiving function necessary to the development of core applications and the protocol conformance verification tool of based on K-4586. When applying the proposed common DLI message module, it can be expected to shorten the UAS system development period and reduce costs, and ensure conformance of protocol. In this paper, the design and implementation method for the common DLI message module based on API was proposed and the results of functional test was described.

Evolving swarm of UAVs

  • Chi, T.Z.;Cheng, Hayong;Page, J.R.;Ahmed, N.A.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.219-232
    • /
    • 2014
  • This paper reports on an ongoing study investigating the feasibility of using an evolutionary method to develop the rules governing Self-Organised (SO) systems for use in swarms of unmanned aerial vehicles. In general, it is difficult to design swarm systems that follow explicit global behaviour. Unlike optimising a predefined objective function, the solution to the problem is the emergent behaviour in the SO systems which results from simultaneous interactions among agents and between agents and their environment. In this study, evolutionary algorithms are used to investigate their control and effectiveness in synthesising the weighting of different rules on SO emergent behaviour. Both homogeneous swarms and heterogeneous swarms were considered though the results provided are for a case study investigating the simplest problem a homogeneous swarm without mutation. Though simple this study does indicate the potential of the approach.

Derivation of Required Insurance and Comparative Analysis of Drone Insurance System (드론 보험제도 비교분석과 요구보험 도출)

  • Choi, Jinheoun;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.144-151
    • /
    • 2020
  • The number of drones used in various fields expected to 50,000 commercial drones by 2026. is to purchase business liability insurance only for commercial drones, as the scope of use of drones expands, it necessary to improve the drone insurance system, which imposes legal obligations aircraft duties. In particular, due to the diversification of aircraft characteristics of drones, an insurance system according to the degree of risk is required. To this end, a survey on the current status of drone operation in Korea, a review of documents related to drone insurance at home and abroad, collection and analysis of drone-related data, insurance systems for each transportation method, and analysis of data on overseas drone insurance products. o derive an improvement plan for the drone insurance system for drone insurance by aircraft characteristics and operation missions, and establish insurance standards by aircraft characteristics and operation missions, derive implications through required insurance surveys by sector such as users, users, and insurance companies. Detailed insurance standards were established by calculating the degree of risk according to the physical characteristics of the aircraft, and the liability for damage according to the operation mission was specified.