• Title/Summary/Keyword: Unmanned aerial application

Search Result 190, Processing Time 0.03 seconds

Wind Tunnel Testing for Smart Unmanned Aerial Vehicle (스마트 무인기 풍동시험)

  • Chung, Jin-Deog;Choi, Sung-Wook;Lee, Jang-Yeoun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.37-40
    • /
    • 2006
  • Wind tunnel testings to develope tilt-rotor Smart Unmanned Aerial Vehicle (SUAV) were intensively performed. Small wind tunnel was used to find and evaluate design parameters and to fix general layout of configuration. The application of large tunnel with 40% scaled model is to collect performance and stability related aerodynamic data. During large scale model test wind tunnel is used as a tool to compare Flaperon types, to improve lift characteristics by using different height vortex generators and to alleviate nacelle separated flow effects on the wing.

  • PDF

Integrated Navigation and Sense & Avoid Systems for Micro Aerial Vehicles

  • Vorsmann, P.;Winkler, S.;Park, J.B.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.145-150
    • /
    • 2006
  • The paper deals with integrated navigation and sense & avoid systems for small unmanned aerial vehicles (UAV). First an introduction to the current UAV activities of the institute is given. It is followed by an overview about the integrated navigation system developed for small UAVs. The system is based on a tightly-coupled GPS/INS architecture. But instead of using delta-ranges, time-differenced carrier phases are used to aid the INS. Finally, results from navigation filter validation in flight tests are presented. After that an overview about sense and avoid strategies for application in small unmanned aircraft is given. From this a guideline for developing such a system for the institute's UAVs is presented.

  • PDF

Analysis for Unmanned Aerial Vehicle Airworthiness Certification Criteria (소형 무인항공기 감항인증 기술기준 및 에너지 충돌기법 분석 연구)

  • Lim, Jun-Wan;Kim, Yong-Rae;Choi, Byung-Chul;Ko, Joon-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2014
  • Unmanned aerial vehicles(UAVs) refer to the aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military application. As the avionics and communication technology related to the UAVs are matured, the demand for the UAVs is dramatically increased. Therefore, It is important to develope airworthiness process and regulations of the UAVs to minimize related risk to the man and environment. This paper describes related regulations and classification of the small UAVs for different international airworthiness authorities. The analysis of the CS-LURS verses Stanag 4702 and Stanag 4703 can provide guidelines for the generation of the airworthiness certification criteria for the small UAVs in civil sector. This paper conducted kinetic impact energy analysis of the loss of the small UAVs control scenarios and of the very small UAVs under 66 joules. Based on the analysis, the energy impact analysis can be considered before the design certification approval for the small UAVs.

Recent R&D Trends of Mobile FSO Technologies (모바일 자유공간 광전송(FSO) 기술 동향)

  • Yeo, C.I.;Heo, Y.S.;Ryu, J.H.;Lee, M.S.;Kang, H.S.;Park, S.W.;Kim, K.E.;Kim, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.118-128
    • /
    • 2018
  • With the massive increase in bandwidth for wireless communications, free space optical (FSO) communication has attracted significant interest owing to its outstanding strengths over conventional radio frequency wireless communication such as a wide bandwidth, unlicensed spectrum, low power consumption, small size, electromagnetic interference immunity, long-range propagation, and improved security. In recent years, FSO technology has been studied intensively for use in terrestrial and underwater autonomous and unmanned mobile systems, a rapidly growing application area, including robots, drones, unmanned aerial vehicles, autonomous vehicles, unmanned trains, and unmanned submarines. In this report, we review the recent trends and key technologies for the mobile FSO system, and introduce our drone-based mobile FSO system, which is currently under development.

An Experimental Study on the Applicability of UAV for the Analysis of Factors Influencing Rural Environment - Focusing on Photovoltaic Facilities and Vacant House in Galsan-Myeon, Hongseong-gun - (농촌 공간 환경영향요인 분석을 위한 무인항공기 적용 가능성에 관한 실험적 연구 - 홍성군 갈산면의 태양광 발전시설과 빈집을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Su-Yeon;Kim, Young-Gyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Rural spaces are increasingly valuable as areas for introducing renewable energy infrastructure to achieve carbon neutrality. Rural areas are the living grounds of rural residents, and the balance of conservation and development for rural areas is important for the introduction of reasonable facilities. In order to maintain a balance between development and preservation and to introduce reasonable renewable energy facilities, it is necessary to develop a current status survey and an effective survey method to utilize a space capable of introducing renewable energy facilities such as idle land and vacant houses. Therefore, this study was conducted to verify the readability using an unmanned aerial vehicle, and the main results are as follows. The detection of photovoltaic power generation facilities using unmanned aerial vehicles was effective in analyzing the location and area of photovoltaic panels located on the roofs of buildings, and it was possible to calculate the expected power generation by region through the area calculation of photovoltaic panels. The vacant house detection can be used to select an investigation target for an vacant house condition survey as it can identify damage to buildings that are expected to be empty houses, management status, and electricity supply facilities through aerial photos. It is judged that the unmanned aerial vehicle detection capability can be utilized as a method to improve the efficiency of investigation and supplement the data related to solar power generation facilities and vacant houses provided by public institutions. Although this study detected the status of solar power generation facilities and vacant houses through high-resolution aerial image analysis, as a follow-up study, automatic measurement methods using the temperature difference of solar power generation facilities and general characteristics of vacant houses that can be read from the air were investigated. If the deriving research is carried out, it is judged that it will be possible to contribute to the improvement of the accuracy of the detection result using the unmanned aerial vehicle and the expansion of the application range.

Aerial Application using a Small RF Controlled Helicopter (II) - Development of Power Unit - (소형 무인헬기를 이용한 항공방제기술 (II) - 동력부의 개발 -)

  • Seok T.S.;Koo Y.M.;Lee C.S.;Shin S.K.;Kang T.G.;Kim S.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.102-107
    • /
    • 2006
  • Opening agricultural market progresses radically, reducing cost of high quality agricultural products becomes urgent. Aerial application using an agricultural helicopter helps precise and timely spraying and reduces labor intensity and pollution. The development of an agricultural helicopter was necessary for taking advantages of both technique and economy. In this study, as the first stage of developing an unmanned helicopter capable of 20kg payload, an engine was selected and a prototype transmission was designed for an agricultural helicopter. Prony type dynamo-meter was constructed, the engine was tested and then performance curve was obtained. The centrifugal clutch was engaged at the rotation speed of 3,500-4,000 rpm. Maximum power was expected at the engine speed of 5,900-6,200 rpm when adjusted at the optimal output. Based on the test results, the transmission was designed for driving main rotor shaft.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

Applicability Evaluation of Agricultural Subsidies Inspection Using Unmanned Aerial Vehicle (무인항공기를 이용한 직불제 이행점검 적용성 평가)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.29-37
    • /
    • 2016
  • Unmanned Aerial Vehicle (UAV) have several advantages over conventional remote sensing techniques. UAV can acquire high-resolution images quickly and repeatedly with a comparatively lower flight altitude i.e. 80~400 m nullifying the effect of extreme weather and cloud. This study discussed the use of low cost-effective UAV based remote sensing application in inspection of agricultural subsidy. The study area accrue $60.5km^2$ of Buljeong-myeon, Goesan-gun, Chungbuk in South Korea. UAV image acquired 25 times from July 25 to August 11, 2015 for 3 days. It is observed that almost 81.1 % (3,571 of 4,410 parcels) parcels are truthful whereas some parcels are incorrect or fraudulent. Surveying with UAV for agricultural subsidy instead of field stuff can reduce the required time as much as 64.8 % (19 of 54 days). Therefore, it can contribute significantly in speedy and more accurate processing of grant application and can end unfair receipt of the grant which in turn will improve customer satisfaction.

Air-Ground Cooperating Robots: Applications and Challenges (공중-지상 로봇 협동 기술과 그 응용 및 연구 방향)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

Development of Instructional Materials for Micro-UAV Design and Production Program using 3D Printers and Its Application (3D 프린팅을 이용한 소형 무인기 설계·제작 교육 프로그램을 위한 수업자료 개발과 적용)

  • Kim, Sitae;Kim, Minseong;Kong, Dongjae
    • Journal of Engineering Education Research
    • /
    • v.24 no.5
    • /
    • pp.46-52
    • /
    • 2021
  • This study introduces the development and application of instructional materials for a micro-UAV (unmanned aerial vehicle) design and manufacturing program in university education for freshman/sophomore students. The ADDIE methodology was applied to the development of educational materials, which consist of 15 lessons including the aircraft design theory, 3D CAD modeling, 3D printing production, and UAV flight control. The validity of the program was evaluated with 8 expert panels. A total of 82 participants from engineering and social science grouped the 16 teams for the creative UAV wing design and cooperative interactions. The results of overall program satisfaction survey was measured highly as the average 4.54 (out of 5), so that the students were content with the professional engineering knowledge, 3D digital tools, and the opportunity to design and manufacture airplanes on their own. In conclusion, it can be confirmed that the developed program is effective for UAV education for junior level college student.