• Title/Summary/Keyword: Unmanned Underwater Vehicles (UUV)

Search Result 25, Processing Time 0.018 seconds

Implementation of an Algorithm for the Estimation of Range and Direction of an Underwater Vehicle Using MFSK Signals (MFSK를 이용한 잠수정의 거리 및 방향 예측알고리즘 구현)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.249-256
    • /
    • 2004
  • KRISO/KORDI is currently developing a deep-sea unmanned underwater vehicle (UUV) system which is composed of a launcher, an ROV, and an AUV. Two USBL acoustic positioning systems will be used for UUV's navigation. One is for the deep sea positioning of all three vehicles and the other is for AUV's guidance to the docking device on the launcher. In order to increase the position accuracy MFSK(Multiple Frequency Shift Keying) broadband signal will be used. As the first step to the implementation of a USBL system, this paper studies USBL positioning algorithm using MFSK signals. Firstly, the characteristics of MFSK signal is described with various MFSK parameters: number of frequencies, frequency step, center frequency, and pulse length. Time and phase delays between two received signals are estimated by using cross-correlation and cross-spectrum methods. Finally an USBL positioning algorithm is derived by converting the delays to difference of distances and applying trigonometry. The simulation results show that the position accuracy is improved highly when both cross-correlation and cross-spectrum of MFSK signals are used simultaneously.

  • PDF

Improvement of Position Estimation Based on the Multisensor Fusion in Underwater Unmanned Vehicles (다중센서 융합 기반 무인잠수정 위치추정 개선)

  • Lee, Kyung-Soo;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • In this paper, we propose the position estimation algorithm based on the multisensor fusion using equalization of state variables and feedback structure. First, the state variables measured from INS of main sensor with large error and DVL of assistance sensor with small error are measured before prediction phase. Next, the equalized state variables are entered to each filter and fused the enhanced state variables for prediction and update phases. Finally, the fused state variables are returned to the main sensor for improving the position estimation of UUV. For evaluation, we create the moving course of UUV by simulation and confirm the performance of position estimation by applying the proposed algorithm. The evaluation results show that the proposed algorithm is the best for position estimation and also possible for robust position estimation at the change period of moving courses.

A Study on Application of Integrated Design Learning of Acoustic Sensors Arranged on Hemispherical Surfaces (반구 곡면에 배열된 음향센서의 종합설계 학습 적용 연구)

  • Lee, Jongkil
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • Underwater acoustic sensors are mounted on unmanned underwater vehicles(UUV) and detect and process the underwater information. These underwater acoustic sensor designs are very important subject for understanding and applying engineering. Therefore, in this paper, it was designed and fabricated the acoustic sensors step by step, evaluated their performance, and then studied the suitability of such a series of design procedures and steps to apply them to the integrated design learning. The results of the questionnaire survey showed that the steps and methods of the proposed sensor design are suitable for the contents of the integrated design project, and they are easy to acquire the technology and are very interesting design topics. It is anticipated that when the design project is applied to the integrated design in the future, high educational achievement will be achieved.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

Use of Fuzzy technique for Calculating Degree of Collision Risk in Obstacle Avoidance of Unmanned Underwater Vehicles (퍼지기법을 이용한 무인잠수정의 장애물회피를 위한 충돌위험도 산출)

  • Jung, Hee;Kim, Seong-Gon;Kim, Yong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.112-119
    • /
    • 2011
  • This paper introduces a technique for calculating the degree of collision risk used in collision avoidance system of AUVs. The collision risk will be reckoned with the fuzzy inference, which uses TCPA(Time of the Closest Point of Approach) and DCPA(Distance of the Closest Point of Approach) as factors. A method to obtain TCPA and DCPA for 3-dimension is suggested. The degree of collision risk is provided to collision avoidance system, and is verified the effectiveness through simulation.