• Title/Summary/Keyword: Unmanned Military Vehicles

Search Result 120, Processing Time 0.027 seconds

Hardware in Loop Simulation on Autopilot Controller with MEMS AHRS for High Speed Unmanned Underwater Vehicle (MEMS형 자세측정장치를 이용한 고속 기동 무인 잠수정 자율 조종 제어기에 대한 HILS)

  • Hwang, Arom;Yoon, Seon-Il;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.81-86
    • /
    • 2012
  • Unmanned underwater vehicles have many applications in scientific, military, and commercial areas because of their autonomy. In many cases, an underwater vehicle adopts a control algorithm based on a tactical inertial sensor for precise control. However, a control algorithm that uses a tactical inertial sensor is unsuitable for some underwater vehicle missions such as torpedo decoys. This paper proposes a control algorithm for an unmanned underwater vehicle that does not require precise control. The control algorithm proposed for an unmanned underwater vehicle adopts a low cost MEMS inertial sensor, and simulations using the specifications of the MEMS inertial sensor under development are performed to verify the control algorithm under a real environment. The results of these simulations are presented.

A DLRF(Diode Laser Range Finder) Using the Cumulative Binary Detection Algorithm (레이저 다이오드를 이용한 이진 신호누적 방식의 거리측정기 기술)

  • Yang, Dong-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.152-159
    • /
    • 2007
  • In this paper, a new design technique on the LRF which is useful for low power laser and a CBDA(Cummulative Binary Detection Algorithm) is proposed. The LD(Laser Diode) and Si-APD(Silicon Avalanche Photo Diode) are used for saving a power. In order to prove the detection range, the Si-APD binary data are accumulated before the range computation and the range finding algorithm. A prototype of the proposed DLRF(Diode Laser Range Finder) system was made and tested. An experimental result shows that the DLRF system have the same detection range using a less power(almost 1/32) than an usual military LRF. The proposed DLRF can be applied to the Unmanned Vehicles, Robot and Future Combat System of a tiny size and a low power LRF.

Analysis of Domestic and Foreign Military UAV Development Trends and Suggestions for Countermeasures Against North Korea UAVs (국내외 군사용 무인기 개발 동향 분석 및 북한 무인기 대응 방안 제언)

  • Kim, Gyou-Beom;Cho, In-Je;Seo, Il-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.97-105
    • /
    • 2021
  • Countries such as the United States, Russia, and Europe are developing and operating UAVs for various purposes, including stealth UAVs. North Korea is also operating unmanned aerial vehicles, and it is presumed that it is continuously flying south of the demarcation line to obtain information on the national security zone, but it is difficult to detect and neutralize it effectively. Therefore, this paper analyzed the military UAV development trends and military radar specifications in Western countries such as the United States and communist countries such as Russia, China, and North Korea through literature research. In addition, based on the investigation of the AESA radar-based UAV response system in the country, not only general responses but also countermeasures such as direct strike and electromagnetic pulses to North Korean UAVs that cannot be jammed were suggested.

VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle (무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법)

  • Kim, Taejin;Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

Posture Stabilization Algorithm of A Small Unmanned Ground Vehicle for Turnover Prevention (전복 방지를 위한 소형 무인주행로봇의 자세 안정화 알고리즘)

  • Koh, Doo-Yeol;Kim, Young-Kook;Lee, Sang-Hoon;Jee, Tae-Young;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.965-973
    • /
    • 2011
  • Small unmanned ground vehicles(SUGVs) are typically operational on unstructured environments such as crashed building, mountain area, caves, and so on. On those terrains, driving control can suffer from the unexpected ground disturbances which occasionally lead turnover situation. In this paper, we have proposed an algorithm which sustains driving stability of a SUGV as preventing from turnover. The algorithm exploits potential field method in order to determine the stability of the robot. Then, the flipper and manipulator posture of the SUGV is optimized from local optimization algorithm known as gradient descent method. The proposed algorithm is verified using 3D dynamic simulation, and results showed that the proposed algorithm contributes to driving stability of SUGV.

Bio-inspired Evasive Movement of UAVs based on Dragonfly Algorithm in Military Environment

  • Gudi, Siva Leela Krishna Chand;Kim, Bo-sun;Silvirianti, Silvirianti;Shin, Soo Young;Chae, Seog
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • Applications of unmanned aerial vehicles (UAVs) in the military environment have become popular because they require minimum human contribution and can avoid accidents during missions. UAVs are employed in various missions such as reconnaissance, observation, aggression, and protection. Consequently, counter-measures, known as anti-drone technologies, have been developed as well. In order to protect against threats from anti-drone technologies and enhance the survivability of UAVs, this study proposes an evasive measure. The proposed bio-inspired evasive maneuver of a UAV mimics a dragonfly's irregular flight. The unpredictable UAV movement is able to confuse enemies and avoid threats, thereby enhancing the UAV's survivability. The proposed system has been implemented on a commercial UAV platform (AR Drone 2.0) and tested in a real environment. The experiment results demonstrate that the proposed flight pattern has larger displacement values compared to a regular flight maneuver, thus making the UAV's position is difficult to predict.

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Research for Drone Target Classification Method Using Deep Learning Techniques (딥 러닝 기법을 이용한 무인기 표적 분류 방법 연구)

  • Soonhyeon Choi;Incheol Cho;Junseok Hyun;Wonjun Choi;Sunghwan Sohn;Jung-Woo Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-196
    • /
    • 2024
  • Classification of drones and birds is challenging due to diverse flight patterns and limited data availability. Previous research has focused on identifying the flight patterns of unmanned aerial vehicles by emphasizing dynamic features such as speed and heading. However, this approach tends to neglect crucial spatial information, making accurate discrimination of unmanned aerial vehicle characteristics challenging. Furthermore, training methods for situations with imbalanced data among classes have not been proposed by traditional machine learning techniques. In this paper, we propose a data processing method that preserves angle information while maintaining positional details, enabling the deep learning model to better comprehend positional information of drones. Additionally, we introduce a training technique to address the issue of data imbalance.

A study on the security threat and security requirements for multi unmanned aerial vehicles (무인기 군집 비행 보안위협 및 보안요구사항 연구)

  • Kim, Mansik;Kang, Jungho;Jun, Moon-seog
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) have mostly been used for military purposes but with the progress in ICT and reduced manufacturing costs, they are increasingly used for various private services. UAVs are expected to carry out autonomous flying in the future. In order to carry out complex tasks, swarm flights are essential. Although the swarm flights has been researched a lot due to its different network and infrastructure from the existing UAV system, There are still not enough study on security threats and requirements for the secure swarm flights. In this paper, to solve these problems, UAV autonomous flight technology is defined based on US Army Corps of Engineers (USACE) and Air Force Research Laboratory (AFRL), and swarm flights and security threat about it are classified. And then we defined and compared security requirements according to security threats of each swarm flights so as to contribute to the development of secure UAC swarm flights in the future.

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.