• 제목/요약/키워드: Unloading ratio

검색결과 108건 처리시간 0.024초

신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화 (Optimization of Design Variables of a Train Suspension Using Neural Network Model)

  • 김영국;박찬경;황희수;박태원
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

실제선로 조건에 따른 철도차량의 주행안전성 해석 (An Analysis of Running Safety for Railway Vehicle Depending on Actual Track Conditions)

  • 김용원;이희성
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.983-988
    • /
    • 2009
  • 기존선 속도향상 시에 주행안전성을 고려한 기존선 구간별 최대 운행가능속도에 대한 실용적인 기준 을 제시하여 기존선의 곡선부 및 완화곡선부 통과 시 속도를 향상시켜야 한다. 본 연구에서는 탈선의 위험도가 높은 곡선부 통과하는 열차의 고속향상을 도모하기 위하여 실제 선로조건인 남성현-청도 상 하행 구간에서의 곡선부 구간별 통과시 주행안전성에 미치는 영향을 살펴보았다. 곡선반경별 주행속도를 실제 선로 조건에서의 기존 속도 대비 5-20% 향상시켜 주행안전성 해석을 수행하였다. 주행안전성 해석 결과, 기존 주행속도 대비 약 15% 이하의 속도조건에서는 탈선 계수와 윤중감소율이 허용기준 이내로 나타나 남성현-청도 상 하행 전 구간 내에서 속도 향상의 가능성을 확인할 수 있었다.

7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響 (The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy)

  • 박영조;김정규;신용승;김성민
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.62-69
    • /
    • 1986
  • 본 연구에서는 표면균열의 전파거동에 관한 연구의 일환으로 경량화재료 로서 항공기 구조용으로 널리 사용되고 있는 7075-T651 알루미늄합금을 준비하고 제하탄성 compliance법을 이용하여 표면 및 깊이 방향의 균열진전거동의 특성을 밝히고져 한다.

공항철도 차량 동특성 해석 및 시험에 관한 연구 (A Study for Vehicle Dynamic Analysis and Test of Airport Railroad)

  • 양희주;성재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.188-193
    • /
    • 2007
  • Airport railroad have required maximum design speed 120km/h and wind speed 50m/s condition as design item of airport railroad vehicles. To design and manufacture the vehicle satisfying these conditions, it must carry out the dynamic behaviors analysis such as hunting stability, ride comfort derailment ratio, unloading ratio and lateral force to meet the criterion described in Urban Railroad Act. Dynamic behaviors of vehicle have carried out using the multi-body dynamics simulation program(VAMPIRE). This paper presents the evaluation methods and criterion used to verify dynamic performance of airport railroad vehicle, and show the analysis results of vehicle dynamic simulation and the test results for vibration and ride comfort measured on running performance tests. As a results, each analysis results and test results meet the criterion described in Urban Railroad Act.

  • PDF

Effect of suction on volume change and shear behaviour of an overconsolidated unsaturated silty soil

  • Estabragh, A.R.;Javadi, A.A.
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.55-65
    • /
    • 2012
  • This paper presents the results of an experimental study on the effect of suction on compressibility and shear behaviour of unsaturated silty soil under various types of loading. A series of laboratory experiments were conducted in a double-walled triaxial cell on samples of a compacted silty soil. In the experiments the soil samples were subjected to isotropic consolidation followed by unloading and subsequent reloading under constant suction and prescribed overconsolidated ratio. The experimental results are presented in the context of an elasto-plastic model for unsaturated soil. The effects of suction on mechanical behaviour of unsaturated silty soil are presented and discussed. It is shown that increasing suction affects the shear behaviour of unsaturated soils, but there is a limit beyond which, further increase in suction will not result in any significant change in the behaviour.

짧은균열의 피로성장거동 (Fatigue Growth Behavior of Short Cracks)

  • 최용식;홍성호;우흥식;한지원
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.54-58
    • /
    • 1993
  • The fatigue growth behavior of short cracks were studied various load ratios. Computer-aided unloading elastic compliance method was employed to measure the closure and the length of short cracks. In the dc/dN-$\Delta$K relationships. the decreasing behavior of the growth rate of short cracks is due to the decrease of crack opening ratio with increasing crack length. Irrespective of load ratio. the growth rate of short cracks can be well decribed in terms of the effective stress intensity factor range $\Delta$K$_{eff}$, which is calculated on the base of crack closure. dc/dN-$\Delta$K$_{eff}$ relationships of short cracks are found to coincide well with the corresponding long crack relationships. accordingly. the growth rate of short cracks can be predicted using that of long cracks.ort cracks can be predicted using that of long cracks.cks.

  • PDF

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Ductility demand of partially self-centering structures under seismic loading: SDOF systems

  • Hu, Xiaobin;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.365-381
    • /
    • 2013
  • In this paper, a numerical simulation study was conducted on the seismic behavior and ductility demand of single-degree-of-freedom (SDOF) systems with partially self-centering hysteresis. Unlike fully self-centering systems, partially self-centering systems display noticeable residual displacement after unloading is completed. Such partially self-centering behavior has been observed in a number of recently researched self-centering structural systems with energy dissipation devices. It is thus of interest to examine the seismic performance such as ductility demand of partially self-centering systems. In this study, a modified flag-shaped hysteresis model with residual displacement is proposed to represent the hysteretic behavior of partially self-centering structural systems. A parametric study considering the effect of variations in post-yield stiffness ratio, energy dissipation coefficient, and residual displacement ratio on the displacement ductility demand of partially self-centering systems was conducted using a suite of 192 scaled ground motions. The results of this parametric study reveal that increasing the post-yield stiffness, energy dissipation coefficient or residual displacement ratio of the partially self-centering systems generally leads to reduced ductility demand, especially for systems with lower yield strength.

5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象 (Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy)

  • 박영조;김정규;신용승;김영운
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.243-252
    • /
    • 1987
  • 본 논문에서는 작은 인공결함을 가진 표면균열의 진전거동을 밝히기 위하여 용접성이 좋고 강도도 적당하며 내식성이 좋아 해양구호무재 및 용접구호물재로서 널 리 사용되는 5083-H113 알루미늄합금을 준비하고 이재료의 피로표면균열 진전거동에 미치는 응력비의 영향을 균열닫힘과 함께 검토하였다.