• Title/Summary/Keyword: Unloading/reloading

Search Result 60, Processing Time 0.032 seconds

Optimal Strain Rate of Unloading-Reloading Cycle in Constant Rate of Strain Consoildation Test (제하-재재하 시 CRS 압밀 시험의 최적 변형률 속도)

  • Park, Ka-Hyun;Yune, Chan-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1156-1167
    • /
    • 2010
  • The constant rate of strain (CRS) consolidation test has been widely used to evaluate consolidation characteristics of soils instead of the standard Incremental Loading Test. In practical problems, after the ground improvement, the condition of the soil is over-consolidated. Therefore, it is important to determine the recompression indices and the coefficient of consolidation(or the coefficient of swelling) of unloading-reloading cycle to predict the settlement behavior. However, since standard testing procedures or studies related with strain rate are insufficient especially in unloading-reloading cycle, it is difficult to predict the settlement field behavior accurately from the CRS consolidation test results in spite of its lots of strengths. The several CRS consolidation tests were performed changing the unloading strain rate from 0.2%/hr to 20%/hr with vertical drainage condition using the reconstituted kaolinite sample. For the reconstituted kaolinite sample in CRS consolidation test, the recompression indices are insensitive to the strain rate. It is revealed that the coefficient of consolidation of reloading is affected by the developed pore pressure during unloading. Additionally, the test should be conducted in the positive pore pressure ratio range (3~15%) to obtain the reasonable coefficient of consolidation in the whole range(loading, unloading and reloading).

  • PDF

Cyclic compressive loading-unloading curves of brick masonry

  • AlShebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.375-382
    • /
    • 2000
  • Experimental investigation into the cyclic behaviour of sand plast brick masonry was performed on forty two square panels. The panels were subjected to cyclic uniaxial compression for two cases of loading: normal to bed joint and parallel to bed joint. Experimental data were used to plot the unloading-reloading curves for the entire range of the stress-strain curve. Mathematical expressions to predict the reloading and unloading stress-strain curves at various values of residual strain are proposed. A simple parabola and an exponential type formula are found adequate to model the unloading and reloading curves respectively. The models account for the potential effects of residual strain on these curves. Comparison of test results with the proposed mathematical expression shows good correspondence.

Deformation characteristics of brick masonry due to partial unloading

  • Alshebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.565-574
    • /
    • 2001
  • Experimental investigation into the behaviour of half-scale brick masonry panels were conducted under cyclic loading normal to the bed joint and parallel to the bed joint. For each cycle, full reloading was performed with the cycle peaks coinciding approximately with the envelope curve. Unloading, however, was carried out fully to zero stress level and partially to two different stress levels of 25 percent and 50 percent of peak stress. Stability point limit exhibits a unique stress-strain curve for full unloading but it could not be established for partial unloading. Common point limit was established for all unloading-reloading patterns considered, but its location depends on the stress level at which unloading is carried to. Common point curves were found to follow an exponential formula, while residual strains versus envelope strains can be expressed by a polynomial function of a single term. The relation between residual strain and envelope strain can be used to determine the stress level at which deterioration due to cyclic loading began.

Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities (강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측)

  • 홍원기
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.159-171
    • /
    • 1995
  • The parameters describing a complete hysteresis loop include pinch force, drift offset, effective stiffness, unloading and reloading trangential stiffness. Analytical equations proposed to quantify the nonlinear, inelastic behavior of reinforced shear walls can be used to predict these parameters as a function of axial load and drift ratio. For example, drift offset, effective stiffness, and first and second unloading and reloading tangential stiffness are calculated using equations obtained from test data for a desired drift ratio or ductility level. Pinch force can also be estimated for a given drift ratio and axial load. The effective virgin stiffness at the first yield and its post yield reduction can be estimated. The load deflection response of flexural reinforced concrete shear walls can now be estimated based on the effective wall stiffness that is a function of axial force and drift ratio.

  • PDF

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

A parametric study of the meso-scale modelling of concrete subjected to cyclic compression

  • Rempling, Rasmus;Grassl, Peter
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.359-373
    • /
    • 2008
  • The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic compression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs). The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by localised permanent displacements, which result in nonlinear fracture processes during unloading and reloading. A parametric study is carried out to investigate how aggregate density and size, amount of permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops obtained with the meso-scale modelling approach.

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

An Experimental Study on Effects of Density and Confining Pressure on the Elastic Modulus of Subgrade Soils (밀도와 구속압력이 노상토의 탄성계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung;Kim, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 1988
  • In this study, effects of the density of soil and the confining pressure applied to the soil sample on the elastic moduli of subgrade soils are experimentally analyzed. Through investigation of subgrade materials of domestic expressways, five typical types of subgrade soils are selected for the experiments. A series of unconsolidated undrained triaxial tests is performed on samples prepared with various water contents and densities at the confining pressures of 1.02, 2.04, and $3.06kg/cm^2$. Initial tangent modulus is inferred from the unloading-reloading portion of the stress strain curve obtained during an individual loading-unloading-reloading test. As a result of the analysis, it is found that the effect of the confining pressure on the elastic modulus of subgrade material is well consistent with the equation proposed by Janbu, and that the elastic modulus can be related to the dry unit weight expressing the Janbu constants as exponentiial functions of it. It is also found that the water content has little effect on the elastic modulus for the samples with the degree of saturation less than 70%.

  • PDF

Variations of Coefficient of Earth Pressure at Rest According to Stress Paths for Compacted Residual Soils (다짐 화강풍화토의 응력이력에 따른 정지상태 토압계수의 변화)

  • Lee Byung-Sik;Park Sung-Kook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Earth pressures acting on unmovable rigid walls vary according to loading-unloading conditions due to compaction experienced by backfill soil. Appropriate coefficients of earth pressure at rest with considering this influence need to be determined to estimate earth pressures more reasonably.0 this study, a single cycle hysteretic model simulating soil's loading-unloading-reloading behavior under $K_o-condition$ was reproduced by conducting a series of $K_o-triaxial$ test for compacted residual soils. Based on the results, coefficients of earth pressure at rest at each stage of stress paths such as, virgin loading, unloading and reloading were determined. Also, applicabilities of empirical equations to the estimation of the coefficients were evaluated by comparing the experimental results with those estimated by the equations. As a result, it was concluded that the empirical equations could be applied reasonably to the estimation of the coefficients for compacted residual soils in cases where some amount of error might be acceptable for the reloading stage of the hysteretic model.

Behaviour of Dry Sand under $K_o$-Loading/unloading Conditions(I) : Single-Cyclic Test ($K_o$-재하/제하에 의한 건조모래의 거동(I): 단주기 시험)

  • 송무효;남선우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-102
    • /
    • 1994
  • For estimation of Ko value depending upon the stress history of dry sand, a new type of Ko oedometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic Ko loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows Kon, the coefficient of earth pressure at rest for virgin loading is a function of the angle of internal friction of the sand and is determined as Kon=1-0.914 sin, Kou the coefficient of earth pressure at -rest for virgin unloading is a function of K. and overconsolidation ratio(OCR), and is determined as Kou : Kon(OCR)". The exponent u, increases as the relative density increases. Ko,, the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, cv', increases. And, the stress path at virgin reloading lends to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, mr, increases as OCR increases.ases.

  • PDF